Veranstaltungen
- Dienstag, 19.09.2023, 15:15 Uhr (WIAS-ESH)
- Oberseminar Nonlinear Dynamics
Dr. Sebastian Eydam, RIKEN - Center for Brain Science, Japan:
Metabolic feedback and its potential role in epilepsy
mehr ... Veranstaltungsort
Weierstraß-Institut, Mohrenstr. 39, 10117 Berlin, Erdgeschoss, Erhard-Schmidt-Hörsaal
Abstrakt
Epilepsy, a widespread neurological disorder, affects a substantial portion of the global population, with approximately 30% of cases proving resistant to conventional pharmacological interventions. This resistance arises from the heterogeneous nature of epilepsy's underlying etiologies, rendering it a complex spectrum of disorders rather than a singular disease entity. While expert neurologists can tailor treatment approaches to individual patients, a significant number of cases remain refractory to available therapies. An alternative avenue for mitigating epilepsy lies in revisiting historical practices such as fasting, which has been reported to reduce seizures back in antiquity. In the early 20th century, this concept evolved into the ketogenic diet (KD), a structured dietary regimen renowned for its efficacy in reducing epileptic seizures [1]. Nonetheless, with the emergence of modern anti-epileptic drugs (AEDs), dietary interventions received limited research attention for several decades, only experiencing resurgence in recent years. In this presentation, we introduce a model featuring quadratic integrate-and-fire neurons coupled to a global energy reservoir. The inclusion of this energy reservoir simulates the transition from a standard diet to a ketogenic one. Our proposed mechanism for seizure control hinges on the presence of ATP-dependent potassium channels [2], whose activity, or lack thereof in the presence of ATP, results in neuronal hyperpolarization. Our findings support the viability of this mechanism for regulating epileptic activity in our model, demonstrating that adherence to a KD can shift neuronal dynamics back to a regime of normal activity. We substantiate this relationship by investigating bifurcations within a corresponding mean-field model [3] and presenting simulations that explore three distinct methods of transitioning between normal and seizure-like activity: ATP concentration shocks, parametric perturbations in ATP production rates, and external current stimulation.
[1] Lutas, Andrew & Yellen, Gary. The ketogenic diet: metabolic influences on brain excitability and epilepsy. Trends in Neurosciences , Vol. 36, No. 1, 2013.
[2] Joo, Pangyu et al. Network Model With Reduced Metabolic Rate Predicts Spatial Synchrony of Neuronal Activity. Frontiers in Computational Neuroscience , Vol. 15, (2021).
[3] Montbrió, Ernest; Pazó, Diego; Roxin, Alex . Macroscopic Description for Networks of Spiking Neurons, Physical Review X , Vol. 5, No. 2 , American Physical Society (APS), (2015).
Veranstalter
WIAS Berlin
- 18. – 22. September 2023 (WIAS-ESH)
- Workshop/Konferenz: ESGI 175 - the Berlin Study Group with Industry
mehr ... Veranstaltungsort
Weierstraß-Institut, Mohrenstr. 39, 10117 Berlin, Erdgeschoss, Erhard-Schmidt-Hörsaal
Veranstalter
WIAS Berlin