Die Gruppe arbeitet zu den folgenden mathematischen Forschungsthemen des WIAS:
Analysis partieller Differentialgleichungen und Evolutionsgleichungen
Partielle Differentialgleichungen liefern adäquate Modelle für Phänomene in Naturwissenschaft und Technik. Am Weierstrass-Institut haben die Forschungen hierzu zwei hauptsächliche Schwerpunkte: (a) Mathematische Analysis allgemeiner Evolutionsgleichungen im Hinblick auf Existenz, Einzigartigkeit und Regularität von verschiedener Begriffen von Lösungen, (b)Entwicklung von variationellen Methoden unter Verwendung des Werkzeugkastens der Variationsrechnung, (c) Regularitätsergebnisse für Lösungen von elliptischen und parabolischen partiellen Differentialgleichungen. [>> more]
Freie Randwertprobleme für partielle DifferentialgleichungenFreie Randwertprobleme werden insbesondere untersucht im Zusammenhang mit der Energietechnologie und der Beschichtung von Oberflächen [>> more]
Funktionalanalysis und OperatortheorieFunktionalanalysis und Operatortheorie sind am WIAS im Besonderen mit Problemen partieller Differentialgleichungen, mit der Analysis von mehrskalen, Hybrid- und ratenunabängigen Modellen verbunden. [>> more]
Numerische Verfahren für gekoppelte Systeme der StrömungsmechanikForschungsschwerpunkte sind Verfahren für Konvektions-Diffusions-Gleichungen, Transportgleichungen mit exponentiellen Nichtlinearitäten und die Navier-Stokes-Gleichungen (turbulente Strömungen). Die Verfahren beruhen auf FEM- oder FVM-Diskretisierungen im Raum und impliziten Diskretisierungen in der Zeit. Als Anwendungen werden Populationsbilanzsysteme und Roosbroeck-Systeme untersucht. [>> more]
Optimale Steuerung partieller Differentialgleichungen und nichtlineare OptimierungViele Prozesse in der Natur und Technik werden durch partielle Differentialgleichungen beschrieben, so zum Beispiel das Aufheizen oder Abkühlen von Körpern, die Ausbreitung von Schall- oder elektromagnetischen Wellen oder die Strömungsmechanik. In vielen Anwendungen ist allerdings nicht nur die Frage nach der Modellierung wichtig, sondern auch die Beeinflussung oder Steuerung des modellierten Systems ist von Interesse, um ein gewisses Ziel zu erreichen... [>> more]
Stochastische OptimierungStochastische Optimierung befasst sich im weitesten Sinne mit Optimierungsproblemen, die von Zufallparametern in der Zielfunktion oder den Restriktionen beeinflusst werden. [>> more]
Systeme partieller Differentialgleichungen: Modellierung, numerische Analysis und SimulationDie mathematische Beschreibung einer großen Zahl von Fragestellungen aus Wissenschaft und Technik führt auf Systeme partieller Differentialgleichungen (PDEs). [>> more]
VariationsrechnungViele physikalische Phänomene lassen sich durch Extremalprinzipien für geeignete Funktionale beschreiben, deren kritische Punkte als Gleichgewichtslösungen relevant sind, insbesondere lokale und globale Minimierer. Die Seifenblase minimiert die Oberfläche bei gegebenem Volumen und ein elastischer Körper minimiert die gespeicherte Energie unter gegebenen Randbedingungen. [>> more]

Forschungsgruppen
- Partielle Differentialgleichungen
- Laserdynamik
- Numerische Mathematik und Wissenschaftliches Rechnen
- Nichtlineare Optimierung und Inverse Probleme
- Stochastische Systeme mit Wechselwirkung
- Stochastische Algorithmen und Nichtparametrische Statistik
- Thermodynamische Modellierung und Analyse von Phasenübergängen
- Nichtglatte Variationsprobleme und Operatorgleichungen