WIAS Preprint No. 2780, (2020)

Modelling charge transport in perovskite solar cells: Potential-based and limiting ion depletion



Authors

  • Abdel, Dilara
    ORCID: 0000-0003-3477-7881
  • Vágner, Petr
    ORCID: 0000-0001-5952-0025
  • Fuhrmann, Jürgen
    ORCID: 0000-0003-4432-2434
  • Farrell, Patricio
    ORCID: 0000-0001-9969-6615

2010 Mathematics Subject Classification

  • 35Q81 35K57 65N08

Keywords

  • Finite volume methods, perovskite solar cells, semiconductor device modelling, drift-diffusion equations, Scharfetter--Gummel methods

DOI

10.20347/WIAS.PREPRINT.2780

Abstract

From Maxwell--Stefan diffusion and general electrostatics, we derive a drift-diffusion model for charge transport in perovskite solar cells (PSCs) where any ion in the perovskite layer may flexibly be chosen to be mobile or immobile. Unlike other models in the literature, our model is based on quasi Fermi potentials instead of densities. This allows to easily include nonlinear diffusion (based on Fermi--Dirac, Gauss--Fermi or Blakemore statistics for example) as well as limit the ion depletion (via the Fermi--Dirac integral of order-1). The latter will be motivated by a grand-canonical formalism of ideal lattice gas. Furthermore, our model allows to use different statistics for different species. We discuss the thermodynamic equilibrium, electroneutrality as well as generation/recombination. Finally, we present numerical finite volume simulations to underline the importance of limiting ion depletion.

Appeared in

Download Documents

  • PDF Version of October 20, 2020 (1067 kByte)
  • PDF Version of May 03, 2021 (1051 kByte)