Mathematical modeling of semiconductors: From quantum mechanics to devices
Authors
- Kantner, Markus
ORCID: 0000-0003-4576-3135 - Mielke, Alexander
ORCID: 0000-0002-4583-3888 - Mittnenzweig, Markus
ORCID: 0000-0002-8502-1702 - Rotundo, Nella
2010 Mathematics Subject Classification
- 35K57 80M30 81S22, 82D37
Keywords
- Semiconductor modeling, drift-diffusion system, open quantum system,, Lindblad operator, reaction-diffusion systems, detailed balance condition, gradient structure, thermodynamically consistent coupling
DOI
Abstract
We discuss recent progress in the mathematical modeling of semiconductor devices. The central result of this paper is a combined quantum-classical model that self-consistently couples van Roosbroeck's drift-diffusion system for classical charge transport with a Lindblad-type quantum master equation. The coupling is shown to obey fundamental principles of non-equilibrium thermodynamics. The appealing thermodynamic properties are shown to arise from the underlying mathematical structure of a damped Hamitlonian system, which is an isothermal version of so-called GENERIC systems. The evolution is governed by a Hamiltonian part and a gradient part involving a Poisson operator and an Onsager operator as geoemtric structures, respectively. Both parts are driven by the conjugate forces given in terms of the derivatives of a suitable free energy.
Appeared in
- Topics in Applied Analysis and Optimisation, M. Hintermüller, J.F. Rodrigues, eds., CIM Series in Mathematical Sciences, Springer Nature Switzerland AG, Cham, 2019, pp. 269--293, DOI 10.1007/978-3-030-33116-0 .
Download Documents