Welcome to my webpage. I am a PostDoc at the Weierstrass Institute for Applied Analysis and Stochastics, Berlin, and member of the research group Nichtlineare Optimierung und Inverse Probleme of Dietmar Hömberg.

My research mainly focuses on the theory of generalized solutions their approximation and optimal control.


  • Currently (WiSe 2023/24), I am teaching the course Partial Differential Equations II at FU Berlin.
  • Lecture Description: Differential equations are a fundamental tool to model processes in science and technology. In this lecture we will first consider fixed-point theorems and use them to show solvability of nonlinear differential equations. Building on linear elliptic theory and Lax-Milgram's lemma, we will prove Browder--Minty's theorem, a general existence result for monotone operators. The generalization to pseudomonotone operators will allow us to treat the stationary Navier--Stokes equations and other examples. In the last part of the course, we will turn to nonsmooth problems and study maximal monotone operators. Prerequisites: Analysis I-III, Linear Algebra
  • time room
    lecture Monday 12-14 1.3.21 Seminarraum T1 (Arnimallee 14)
    lecture Wednesday 10-12 A6/SR 009 Seminarraum
    exercise Wednesday 12-14 A6/SR 025/026 Seminarraum
  • Previous courses:
  • term course
    SoSe 2021 Nonlinear functional analysis and evolution equations (Lecture)
    SoSe 2019 Nonlinear functional analysis and evolution equations (Lecture)
    WiSe 2016/2017 Differentialgleichungen I (Tutorium), Differentialgleichungen IIB (Übung)
    SoSe 2016 Differentialgleichungen für Ingenieure (Tutorium)
    WiSe 2015/2016 Differentialgleichungen I (Übung)
    SoSe 2015 Analysis II (Tutorium)
    WiSe 2014/2015 Differentialgleichungen I (Übung), Differentialgleichungen I (Tutorium)
    SoSe 2014 Analysis III für Ingenieure (Tutorium)
    WiSe 2013/2014 Differentialgleichungen für Ingenieure (Tutorium)
    SoSe 2014 Mathematik für Physiker IV (Tutorium)
    SoSe 2011 Nichtineare Optimierung (Übung)
    WiSe 2010/2011 Lineare Algebra für Ingenieure (Tutorium)

    Research Interests

    • Generalized solutions to the Ericksen–Leslie model
    • Measure-valued, dissipative, entropy solutions
    • Weak-strong uniqueness of solutions
    • liquid crystal flow
    • Relative energy approach
    • optimal control
    • Induction hardening
    • Convergence of discretization methods
    • Energy-variaitonal solutions
    • Phase-field models
    • Viscoelastic fluids



    Education and Theses


    Phone+49 (0) 30 20372-466
    AddressMohrenstrasse 39, 10117 Berlin