This topic is currently not treated at the WIAS.
Design of nano structures for applications in photovoltaics
A key role for the development of new efficient technologies of thin film solar cells is played by the mathematical modelling and numerical simulation of complex growth processes of the films, their resulting material properties and finally, their opto electronic properties. One focus of investigations concerns the derivation of simplified model equations, that enable parameter studies and optimisation of material properties, such as for growth processes of thin Sifilms, or coating of aSilicon substrates with photoaktiv polymer films.Semiconductor simulation in photovoltaics
In cooperation with Helmholtz Centre Berlin for Materials and Energy we performed 2D and 3D simulations for a novel concept in thin film photovoltaics by using the WIASTeSCA software. The equipment of a standard device with electrically conducting point contacts embedded in an appropriate passivation layer shows a beneficial effect on the solar cell performance. In the present model study, especially, the effect of the point contact radius and the interfacial defect density have been investigated.Publications
Monographs

M. Hintermüller, D. Wegner, Distributed and Boundary Control Problems for the Semidiscrete CahnHilliard/NavierStokes System with Nonsmooth GinzburgLandau Energies, in: Topological Optimization and Optimal Transport in the Applied Sciences, M. Bergounioux, E. Oudet, M. Rumpf, G. Carlier, Th. Champion, F. Santambrogio, eds., 17 of Radon Series on Computational and Applied Mathematics, De Gruyter, Berlin, 2017, pp. 4063, (Chapter Published).

H.Chr. Kaiser, D. Knees, A. Mielke, J. Rehberg, E. Rocca, M. Thomas, E. Valdinoci, eds., PDE 2015: Theory and Applications of Partial Differential Equations, 10 of Discrete and Continuous Dynamical Systems  Series S, American Institute of Mathematical Science, Springfield, 2017, iv+933 pages, (Collection Published).

B. Wagner, B. Rech, A. Münch, V. Mehrmann, eds., Proceedings of the Workshop Mathematics in Industry: Technologies of Thin Film Solar Cells, WIAS, Berlin, 2010, 68 pages, (Collection Published).
Articles in Refereed Journals

S. Kayser, P. Farrell, N. Rotundo, Detecting striations via the lateral photovoltage scanning method without screening effect, Optical and Quantum Electronics, 53 (2021), pp. 288/1288/10, DOI 10.1007/s11082021029111 .
Abstract
The lateral photovoltage scanning method (LPS) detects doping inhomogeneities in semiconductors such as Si, Ge and Si(x)Ge(1x) in a cheap, fast and nondestructive manner. LPS relies on the bulk photovoltaic effect and thus can detect any physical quantity affecting the band profiles of the sample. LPS finite volume simulation using commercial software suffer from long simulation times and convergence instabilities. We present here an opensource finite volume simulation for a 2D Si sample using the ddfermi simulator. For low injection conditions we show that the LPS voltage is proportional to the doping gradient as previous theory suggested under certain conditions. For higher injection conditions we directly show how the LPS voltage and the doping gradient differ and link the physical effect of lower local resolution to the screening effect. Previously, the loss of local resolution was assumed to be only connected to the enlargement of the excess charge carrier distribution. 
P. Farrell, S. Kayser, N. Rotundo, Modeling and simulation of the lateral photovoltage scanning method, Computers & Mathematics with Applications. An International Journal, 102 (2021), pp. 248260, DOI 10.1016/j.camwa.2021.10.017 .
Abstract
The fast, cheap and nondestructive lateral photovoltage scanning (LPS) method detects inhomogeneities in semiconductors crystals. The goal of this paper is to model and simulate this technique for a given doping profile. Our model is based on the semiconductor device equations combined with a nonlinear boundary condition, modelling a volt meter. To validate our 2D and 3D finite volume simulations, we use theory developed by Tauc [21] to derive three analytical predictions which our simulation results corroborate, even for anisotropic 2D and 3D meshes. Our code runs about two orders of magnitudes faster than earlier implementations based on commercial software [15]. It also performs well for small doping concentrations which previously could not be simulated at all due to numerical instabilities. Our simulations provide experimentalists with reference laser powers for which meaningful voltages can still be measured. For higher laser power the screening effect does not allow this anymore. 
D. Uebel, S. Kayser, T. Markurt, O.C. Ernst, Th. Teubner, T. Boeck, Fast Raman mapping and in situ TEM observation of metal induced crystallization of amorphous silicon, CrystEngComm, 22 (2020), pp. 79837991, DOI 10.1039/D0CE00960A .
Abstract
Crystalline silicon is grown onto an amorphous silicon (aSi) seed layer from liquid tin solution (steady state liquid phase epitaxy, SSLPE). To investigate the crystallization of embedded aSi during our process, we adapted Raman measurements for fast mapping, with dwell times of just one second per single measurement. A purposely developed imaging algorithm which performs pointbypoint gauss fitting provides adequate visualization of the data. We produced scans of aSi layers showing crystalline structures formed in the aSi matrix during processing. Compared to scanning electron microscopy images which reveal merely the topography of the grown layer, new insights are gained into the role of the seed layer by Raman mapping. As part of a series of SSLPE experiments, which were interrupted at various stages of growth, we show that platelike crystallites grow laterally over the aSi layer while smaller, randomly orientated crystals arise from the aSi layer. Results are confirmed by an in situ TEM experiment of the metalinduced crystallization. Contrary to presumptions, initially formed surface crystallites do not originate from the seed layer and are irrelevant to the final growth morphology, since they dissolve within minutes due to Ostwald ripening. The aSi layer crystallizes within minutes as well, and crystallites of the final morphology originate from seeds of this layer. 
T. Ahnert, A. Münch, B. Wagner, Models for the twophase flow of concentrated suspensions, European Journal of Applied Mathematics, 30 (2019), pp. 585617 (published online on 04.06.2018), DOI 10.1017/S095679251800030X .
Abstract
A new twophase model is derived that make use of a constitutive law combining nonBrownian suspension with granular rheology, that was recently proposed by Boyer et al. [PRL, 107(18),188301 (2011)]. It is shown that for the simple channel flow geometry, the stress model naturally exhibits a Bingham type flow property with an unyielded finitesize zone in the center of the channel. As the volume fraction of the solid phase is increased, the various transitions in the flow fields are discussed using phase space methods for a boundary value problem, that is derived from the full model. The predictions of this analysis is then compared to the direct finiteelement numerical solutions of the full model. 
S. Bergmann, D.A. BarraganYani, E. Flegel, K. Albe, B. Wagner, Anisotropic solidliquid interface kinetics in silicon: An atomistically informed phasefield model, Modelling and Simulation in Materials Science and Engineering, 25 (2017), pp. 065015/1065015/20, DOI 10.1088/1361651X/aa7862 .
Abstract
We present an atomistically informed parametrization of a phasefield model for describing the anisotropic mobility of liquidsolid interfaces in silicon. The model is derived from a consistent set of atomistic data and thus allows to directly link molecular dynamics and phase field simulations. Expressions for the free energy density, the interfacial energy and the temperature and orientation dependent interface mobility are systematically fitted to data from molecular dynamics simulations based on the StillingerWeber interatomic potential. The temperaturedependent interface velocity follows a VogelFulcher type behavior and allows to properly account for the dynamics in the undercooled melt. 
M. Dziwnik, A. Münch, B. Wagner, An anisotropic phasefield model for solidstate dewetting and its sharpinterface limit, Nonlinearity, 30 (2017), pp. 14651496.
Abstract
We propose a phase field model for solid state dewetting in form of a CahnHilliard equation with weakly anisotropic surface energy and a degenerate mobility together with a free boundary condition at the filmsubstrate contact line. We derive the corresponding sharp interface limit via matched asymptotic analysis involving multiple inner layers. The resulting sharp interface model is consistent with the pure surface diffusion model. In addition, we show that the natural boundary conditions, as indicated from the first variation of the total free energy, imply a contact angle condition for the dewetting front, which, in the isotropic case, is consistent with the wellknown Young's equation. 
A. Bercegol, B. Chacko, R. Klenk, I. Lauermann, M.Ch. LuxSteiner, M. Liero, Point contacts at the copperindiumgalliumselenide interface  A theoretical outlook, Journal of Applied Physics, 119 (2016), pp. 155304/1155304/7, DOI 10.1063/1.4947267 .
Abstract
For a long time, it has been assumed that recombination in the spacecharge region of CIGS is dominant, at least in high efficiency solar cells with low band gap. The recent developments like KF post deposition treatment and pointcontact junction may call this into question. In this work a theoretical outlook is made using threedimensional simulations to investigate the effect of pointcontact openings through a passivation layer on CIGS solar cell performance. A large set of solar cells is modeled under different scenarios for the charged defect levels and density, radius of the openings, interface quality and conduction band offset. The positive surface charge created by the passivation layer induces band bending and this influences the contact (CdS) properties, making it beneficial for the open circuit voltage and efficiency, and the effect is even more pronounced when coverage area is more than 95 %, and also makes a positive impact on the device performance, even in the presence of a spike at CIGS/CdS heterojunction. 
M.G. Hennessy, V.M. Burlakov, A. Münch, B. Wagner, A. Goriely, Controlled topological transitions in thinfilm phase separation, SIAM Journal on Applied Mathematics, 75 (2015), pp. 3860.
Abstract
In this paper the evolution of a binary mixture in a thinfilm geometry with a wall at the top and bottom is considered. Bringing the mixture into its miscibility gap so that no spinodal decomposition occurs in the bulk, a slight energetic bias of the walls towards each one of the constituents ensures the nucleation of thin boundary layers that grow until the constituents have moved into one of the two layers. These layers are separated by an interfacial region, where the composition changes rapidly. Conditions that ensure the separation into two layers with a thin interfacial region are investigated based on a phasefield model and using matched asymptotic expansions a corresponding sharpinterface problem for the location of the interface is established. It is then argued that a thus created twolayer system is not at its energetic minimum but destabilizes into a controlled selfreplicating pattern of trapezoidal vertical stripes by minimizing the interfacial energy between the phases while conserving their area. A quantitative analysis of this mechanism is carried out via a new thinfilm model for the free interfaces, which is derived asymptotically from the sharpinterface model. 
A. Glitzky, A. Mielke, A gradient structure for systems coupling reactiondiffusion effects in bulk and interfaces, ZAMP Zeitschrift fur Angewandte Mathematik und Physik. ZAMP. Journal of Applied Mathematics and Physics. Journal de Mathematiques et de Physique Appliquees, 64 (2013), pp. 2952.
Abstract
We derive gradientflow formulations for systems describing driftdiffusion processes of a finite number of species which undergo massaction type reversible reactions. Our investigations cover heterostructures, where material parameter may depend in a nonsmooth way on the space variable. The main results concern a gradient flow formulation for electroreactiondiffusion systems with active interfaces permitting driftdiffusion processes and reactions of species living on the interface and transfer mechanisms allowing bulk species to jump into an interface or to pass through interfaces. The gradient flows are formulated in terms of two functionals: the free energy and the dissipation potential. Both functionals consist of a bulk and an interface integral. The interface integrals determine the interface dynamics as well as the selfconsistent coupling to the model in the bulk. The advantage of the gradient structure is that it automatically generates thermodynamically consistent models. 
A. Mielke, Thermomechanical modeling of energyreactiondiffusion systems, including bulkinterface interactions, Discrete and Continuous Dynamical Systems  Series S, 6 (2013), pp. 479499.
Abstract
We show that many couplings between parabolic systems for processes in solids can be formulated as a gradient system with respect to the total free energy or the total entropy. This includes AllenCahn, CahnHilliard, and reactiondiffusion systems and the heat equation. For this, we write the coupled system as an Onsager system (X,Φ,K) defining the evolution $dot U$=  K(U) DΦ(U). Here Φ is the driving functional, while the Onsager operator K(U) is symmetric and positive semidefinite. If the inverse G=K^{1} exists, the triple (X,Φ,G) defines a gradient system. Onsager systems are well suited to model bulkinterface interactions by using the dual dissipation potential Ψ^{*}(U, Ξ)= ½ ⟨Ξ K(U) Ξ⟩. Then, the two functionals Φ and Ψ^{*} can be written as a sum of a volume integral and a surface integral, respectively. The latter may contain interactions of the driving forces in the interface as well as the traces of the driving forces from the bulk. Thus, capture and escape mechanisms like thermionic emission appear naturally in Onsager systems, namely simply through integration by parts. 
A. Glitzky, An electronic model for solar cells including active interfaces and energy resolved defect densities, SIAM Journal on Mathematical Analysis, 44 (2012), pp. 38743900.
Abstract
We introduce an electronic model for solar cells taking into account heterostructures with active interfaces and energy resolved volume and interface trap densities. The model consists of continuity equations for electrons and holes with thermionic emission transfer conditions at the interface and of ODEs for the trap densities with energy level and spatial position as parameters, where the right hand sides contain generationrecombination as well as ionization reactions. This system is coupled with a Poisson equation for the electrostatic potential. We show the thermodynamic correctness of the model and prove a priori estimates for the solutions to the evolution system. Moreover, existence and uniqueness of weak solutions of the problem are proven. For this purpose we solve a regularized problem and verify bounds of the corresponding solution not depending on the regularization level. 
A. Glitzky, Analysis of electronic models for solar cells including energy resolved defect densities, Mathematical Methods in the Applied Sciences, 34 (2011), pp. 19801998.
Abstract
We introduce an electronic model for solar cells including energy resolved defect densities. The resulting driftdiffusion model corresponds to a generalized van Roosbroeck system with additional source terms coupled with ODEs containing space and energy as parameters for all defect densities. The system has to be considered in heterostructures and with mixed boundary conditions from device simulation. We give a weak formulation of the problem. If the boundary data and the sources are compatible with thermodynamic equilibrium the free energy along solutions decays monotonously. In other cases it may be increasing, but we estimate its growth. We establish boundedness and uniqueness results and prove the existence of a weak solution. This is done by considering a regularized problem, showing its solvability and the boundedness of its solutions independent of the regularization level. 
A. Mielke, A gradient structure for reactiondiffusion systems and for energydriftdiffusion systems, Nonlinearity, 24 (2011), pp. 13291346.
Abstract
In recent years the theory of Wasserstein distances has opened up a new treatment of the diffusion equations as gradient systems, where the entropy takes the role of the driving functional and where the space is equipped with the Wasserstein metric. We show that this structure can be generalized to closed reactiondiffusion systems, where the free energy (or the entropy) is the driving functional and further conserved quantities may exists, like the total number of chemical species. The metric is constructed by using the dual dissipation potential, which is a convex function of the chemical potentials. In particular, it is possible to treat diffusion and reaction terms simultaneously. The same ideas extend to semiconductor equations involving the electron and hole densities, the electrostatic potential, and the temperature. 
N. Allsop, R. Nürnberg, M.Ch. LuxSteiner, Th. SchedelNiedrig, Threedimensional simulations of a thin film heterojunction solar cell with a point contact/defect passivation structure at the heterointerface, Applied Physics Letters, 95 (2009), pp. 122108/1122108/3.

H.Chr. Kaiser, H. Neidhardt, J. Rehberg, Classical solutions of driftdiffusion equations for semiconductor devices: The 2D case, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods, 71 (2009), pp. 15841605.
Abstract
We regard driftdiffusion equations for semiconductor devices in Lebesgue spaces. To that end we reformulate the (generalized) van Roosbroeck system as an evolution equation for the potentials to the driving forces of the currents of electrons and holes. This evolution equation falls into a class of quasilinear parabolic systems which allow unique, local in time solution in certain Lebesgue spaces. In particular, it turns out that the divergence of the electron and hole current is an integrable function. Hence, Gauss' theorem applies, and gives the foundation for space discretization of the equations by means of finite volume schemes. Moreover, the strong differentiability of the electron and hole density in time is constitutive for the implicit time discretization scheme. Finite volume discretization of space, and implicit time discretization are accepted custom in engineering and scientific computing. This investigation puts special emphasis on nonsmooth spatial domains, mixed boundary conditions, and heterogeneous material compositions, as required in electronic device simulation. 
J.A. Griepentrog, W. Höppner, H.Chr. Kaiser, J. Rehberg, A biLipschitz continuous, volume preserving map from the unit ball onto a cube, Note di Matematica, 28 (2008), pp. 185201.
Abstract
We construct two biLipschitz, volume preserving maps from Euclidean space onto itself which map the unit ball onto a cylinder and onto a cube, respectively. Moreover, we characterize invariant sets of these mappings. 
R. HallerDintelmann, H.Chr. Kaiser, J. Rehberg, Elliptic model problems including mixed boundary conditions and material heterogeneities, Journal de Mathématiques Pures et Appliquées, 89 (2008), pp. 2548.

J. Elschner, H.Chr. Kaiser, J. Rehberg, G. Schmidt, $W^1,q$ regularity results for elliptic transmission problems on heterogeneous polyhedra, Mathematical Models & Methods in Applied Sciences, 17 (2007), pp. 593615.

H.Chr. Kaiser, H. Neidhardt, J. Rehberg, Classical solutions of quasilinear parabolic systems on two dimensional domains, NoDEA. Nonlinear Differential Equations and Applications, 13 (2006), pp. 287310.
Contributions to Collected Editions

V. Mehrmann, A. Mielke, F. Schmidt, D  Electronic and photonic devices, in: MATHEON  Mathematics for Key Technologies, M. Grötschel, D. Hömberg, J. Sprekels, V. Mehrmann ET AL., eds., 1 of EMS Series in Industrial and Applied Mathematics, European Mathematical Society Publishing House, Zurich, 2014, pp. 229232.

A. Glitzky, A. Mielke, L. Recke, M. Wolfrum, S. Yanchuk, D2  Mathematics for optoelectronic devices, in: MATHEON  Mathematics for Key Technologies, M. Grötschel, D. Hömberg, J. Sprekels, V. Mehrmann ET AL., eds., 1 of EMS Series in Industrial and Applied Mathematics, European Mathematical Society Publishing House, Zurich, 2014, pp. 243256.

H. Gajewski, H.Chr. Kaiser, H. Langmach, R. Nürnberg, R.H. Richter, Mathematical modelling and numerical simulation of semiconductor detectors, in: Mathematics  Key Technology for the Future. Joint Projects Between Universities and Industry, W. Jäger, H.J. Krebs, eds., Springer, Berlin [u.a.], 2003, pp. 355364.

U. Bandelow, H. Gajewski, H.Chr. Kaiser, Modeling combined effects of carrier injection, photon dynamics and heating in Strained MultiQuantumWell Laser, in: Physics and Simulation of Optoelectronic Devices VIII, R.H. Binder, P. Blood, M. Osinski, eds., 3944 of Proceedings of SPIE, SPIE, Bellingham, WA, 2000, pp. 301310.

H.Chr. Kaiser, J. Rehberg, About some mathematical questions concerning the embedding of SchrödingerPoisson systems into the driftdiffusion model of semiconductor devices, in: EQUADIFF 99: International Conference on Differential Equations, Berlin 1999, B. Fiedler, K. Gröger, J. Sprekels, eds., 2, World Scientific, Singapore [u. a.], 2000, pp. 13281333.
Talks, Poster

D. Abdel, N.E. Courtier, P. Farrell, Modelling and simulation of charge transport in Perovskite solar cells, SIAM Conference on Computational Science and Engineering (CSE23), Amsterdam, Netherlands, February 26  March 3, 2023.

P. Farrell, S. Kayser, N. Rotundo, Modeling and simulation of the lateral photovoltage scanning method, SIAM Conference on Computational Science and Engineering  CSE21 (Online Event), Texas, USA, March 1  5, 2021.

N. Dropka , P. Farrell, S. Kayser, N. Rotundo, Numerics for innovative semiconductor devices  An outlook, German Conference on Crystal Growth, Munich, March 11  13, 2020.

M. Hintermüller, Optimal control of multiphase fluids and droplets, Colloquium of the Mathematical Institute, University of Oxford, UK, June 7, 2019.

M. Hintermüller, Nonsmooth structures in PDE constrained optimization, Optimization Seminar, Chinese Academy of Sciences, State Key Laboratory of Scientific and Engineering Computing, Beijing, China, June 6, 2017.

M. Hintermüller, Optimal control of multiphase fluids and droplets, Salzburg Mathematics Colloquium, Universität Salzburg, Fachbereich Mathematik, Austria, June 9, 2016.

M. Hintermüller, Recent trends in optimal control problems with nonsmooth structures, Computational Methods for Control of Infinitedimensional Systems, March 14  18, 2016, Institute for Mathematics and its Applications, Minneapolis, USA, March 14, 2016.

A. Glitzky, Driftdiffusion models for heterostructures in photovoltaics, 8th European Conference on Elliptic and Parabolic Problems, Minisymposium ``Qualitative Properties of Nonlinear Elliptic and Parabolic Equations'', May 26  30, 2014, Universität Zürich, Institut für Mathematik, organized in Gaeta, Italy, May 27, 2014.

M. Liero, On gradient structures for driftreactiondiffusion systems and Markov chains, Analysis Seminar, University of Bath, Mathematical Sciences, UK, November 21, 2013.

M. Liero, On gradient structures and geodesic convexity for reactiondiffusion systems, Research Seminar, Westfälische WilhelmsUniversität Münster, Institut für Numerische und Angewandte Mathematik, April 17, 2013.

A. Glitzky, Continuous and finite volume discretized reactiondiffusion systems in heterostructures, Asymptotic Behaviour of Systems of PDE Arising in Physics and Biology: Theoretical and Numerical Points of View, November 6  8, 2013, Lille 1 University  Science and Technology, France, November 6, 2013.

A. Mielke, Gradient structures and dissipation distances for reactiondiffusion systems, Workshop ``Material Theory'', December 16  20, 2013, Mathematisches Forschungsinstitut Oberwolfach, December 17, 2013.

A. Mielke, Using gradient structures for modeling semiconductors, Eindhoven University of Technology, Institute for Complex Molecular Systems, Netherlands, February 21, 2013.

TH. Koprucki, A. Glitzky, A. Fischer, Electronic and thermal effects in organic semiconductors, Organic Photovoltaics Workshop, Oxford University, Mathematical Institute, UK, April 2, 2012.

M. Liero, Interfaces in reactiondiffusion systems, Seminar ``Dünne Schichten'', Technische Universität Berlin, Institut für Mathematik, February 9, 2012.

M. Liero, Interfaces in solar cells, 5th Annual Meeting Photonic Devices, February 23, 2012, KonradZuseZentrum für Informationstechnik, Berlin, February 24, 2012.

M. Liero, WIASTeSCA simulations in photovoltaics for a point contact concept of heterojunction thin film solar cells, International Workshop ``Mathematics for Semiconductur Heterostructures: Modeling, Analysis, and Numerics'', September 24  28, 2012, WIAS Berlin, September 25, 2012.

A. Glitzky, An electronic model for solar cells taking into account active interfaces, International Workshop ``Mathematics for Semiconductur Heterostructures: Modeling, Analysis, and Numerics'', September 24  28, 2012, WIAS Berlin, September 27, 2012.

A. Mielke, Multidimensional modeling and simulation of optoelectronic devices, Challenge Workshop ``Modeling, Simulation and Optimisation Tools'', September 24  26, 2012, Technische Universität Berlin, September 24, 2012.

A. Mielke, Using gradient structures for modeling semiconductors, International Workshop ``Mathematics for Semiconductur Heterostructures: Modeling, Analysis, and Numerics'', September 24  28, 2012, WIAS Berlin, September 24, 2012.

M. Liero, Derivation of effective interface conditions for reactiondiffusion equations, 82th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2011), Session on Applied Analysis, April 18  21, 2011, Technische Universität Graz, Austria, April 19, 2011.

A. Glitzky, An electronic model for solar cells including active interfaces, Workshop ``Mathematical Modelling of Organic Photovoltaic Devices'', University of Cambridge, Department of Applied Mathematics and Theoretical Physics, UK, June 9, 2011.

A. Glitzky, Analysis of electronic models for solar cells including energy resolved defect densities, 82th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2011), Session on Applied Analysis, April 18  21, 2011, Technische Universität Graz, Austria, April 20, 2011.

A. Mielke, Thermodynamical modeling of bulkinterface interaction in reactiondiffusion systems, Interfaces and Discontinuities in Solids, Liquids and Crystals (INDI2011), June 20  23, 2011, Gargnano (Brescia), Italy, June 20, 2011.

A. Mielke, Mathematical approaches to thermodynamic modeling, Autumn School on Mathematical Principles for and Advances in Continuum Mechanics, November 7  12, 2011, Centro di Ricerca Matematica ``Ennio De Giorgi'', Pisa, Italy.

A. Mielke, Gradient structures for electroreactiondiffusion systems with applications in photovoltaics, First Interdisciplinary Workshop of the GermanRussian Interdisciplinary Science Center (GRISC) ``Structure and Dynamics of Matter'', October 18  20, 2010, Freie Universität Berlin and HelmholtzZentrum Berlin für Materialien und Energie, October 19, 2010.

A. Mielke, Gradient structures for reactiondiffusion systems and semiconductor equations, 81th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2010), Session on Applied Analysis, March 22  26, 2010, Universität Karlsruhe, March 24, 2010.

A. Mielke, Gradient structures for reactiondiffusion systems and semiconductor models with interface dynamics, International Conference on Evolution Equations, October 11  14, 2010, Technische Universität Darmstadt, Fachbereich Mathematik, Schmitten, October 12, 2010.

A. Mielke, The GENERIC formulation for dissipative temperaturedependent materials, International Symposium on Trends in Applications of Mathematics to Mechanics (STAMM 2010), August 30  September 2, 2010, Technische Universität Berlin, Institut für Mechanik, Berlin, September 1, 2010.
Mathematical Context
 Algorithms for the generation of 3D boundary conforming Delaunay meshes
 Analysis of Partial Differential Equations and Evolutionary Equations
 Direct and inverse problems for the Maxwell equations
 Free boundary problems for partial differential equations
 Functional analysis and operator theory
 Modeling, analysis and numerics of phase field models
 Multiscale modeling, asymptotic analysis, and hybrid models
 Numerical methods for problems from fluid dynamics
 Optimal control of partial differential equations and nonlinear optimization
 Systems of partial differential equations: modeling, numerical analysis and simulation