WIAS Preprint List: Eiter, Thomas
- 3000: Eiter, Thomas; Shibata, Yoshihiro
Viscous flow past a translating body with oscillating boundary
- 2979: Eiter, Thomas
On the regularity of weak solutions to time-periodic Navier--Stokes equations in exterior domains
Appeared in: Mathematics, 11 (2023), pp. 141/1--141/17 (published online on 27.12.2022), DOI 10.3390/math11010141 . - 2974: Eiter, Thomas; Lasarzik, Robert
Existence of energy-variational solutions to hyperbolic conservation laws
- 2931: Eiter, Thomas; Kyed, Mads; Shibata, Yoshihiro
Periodic Lp estimates by R-boundedness: Applications to the Navier--Stokes equations
Appeared in: Acta Appl. Math., 188 (2023), pp. 1/1--1/43, DOI 10.1007/s10440-023-00612-3 . - 2904: Eiter, Thomas; Hopf, Katharina; Lasarzik, Robert
Weak-strong uniqueness and energy-variational solutions for a class of viscoelastoplastic fluid models
Appeared in: Adv. Nonlinear Anal., 12 (2023), pp. 20220274/1--20220274/31 (published online on 03.10.2022), DOI 10.1515_anona-2022-0274 . - 2888: Eiter, Thomas
On the Oseen-type resolvent problem associated with time-periodic flow past a rotating body
Appeared in: SIAM J. Math. Anal., 54 (2022), pp. 4987--5012, DOI 10.1137/21M1456728 . - 2876: Eiter, Thomas
On the Stokes-type resolvent problem associated with time-periodic flow around a rotating obstacle
Appeared in: J. Math. Fluid Mech., 24 (2022), pp. 52/1--17, DOI 10.1007/s00021-021-00654-3 . - 2829: Eiter, Thomas; Hopf, Katharina; Mielke, Alexander
Leray--Hopf solutions to a viscoelastic fluid model with nonsmooth stress-strain relation
Appeared in: Nonlinear Anal. Real World Appl., 65 (2022), pp. 103491/1--103491/30 (published online on 20.12.2021), DOI 10.1016/j.nonrwa.2021.103491 . - 2791: Eiter, Thomas; Galdi, Giovanni P.
Spatial decay of the vorticity field of time-periodic viscous flow past a body
Appeared in: Arch. Ration. Mech. Anal., 242 (2021), pp. 149--178, DOI 10.1007/s00205-021-01690-z . - 2727: Eiter, Thomas
On the spatially asymptotic structure of time-periodic solutions to the Navier--Stokes equations
Appeared in: Probab. Surv., 149 (2021), pp. 3439--3451, DOI 10.1090/proc/15482 .