Gibbsianness of locally thinned random fields
Authors
- Engler, Nils
- Jahnel, Benedikt
ORCID: 0000-0002-4212-0065 - Külske, Christof
2020 Mathematics Subject Classification
- 60D05 60K35 82B20
Keywords
- Gibbsianness, Bernoulli field, local thinning, two-layer representation, Dobrushin uniqueness, cluster expansion, disagreement percolation
DOI
Abstract
We consider the locally thinned Bernoulli field on ℤ d, which is the lattice version of the Type-I Matérn hardcore process in Euclidean space. It is given as the lattice field of occupation variables, obtained as image of an i.i.d. Bernoulli lattice field with occupation probability p, under the map which removes all particles with neighbors, while keeping the isolated particles. We prove that the thinned measure has a Gibbsian representation and provide control on its quasilocal dependence, both in the regime of small p, but also in the regime of large p, where the thinning transformation changes the Bernoulli measure drastically. Our methods rely on Dobrushin uniqueness criteria, disagreement percolation arguments [46], and cluster expansions
Appeared in
- Markov Process. Related Fields, 28 (2022), pp. 185--214, DOI 10.48550/arXiv.2201.02651 .
Download Documents