Regularization for optimal control problems associated to nonlinear evolution equations
Authors
- Meinlschmidt, Hannes
ORCID: 0000-0002-5874-8017 - Meyer, Christian
- Rehberg, Joachim
2010 Mathematics Subject Classification
- 49K20 49J20 47J20 47J35 46E40
Keywords
- Optimal control, regularization, nonlinear evolution equations, compactness, function spaces
DOI
Abstract
It is well-known that in the case of a sufficiently nonlinear general optimal control problem there is very frequently the necessity for a compactness argument in order to pass to the limit in the state equation in the standard ``calculus of variations'' proof for the existence of optimal controls. For time-dependent state equations, i.e., evolution equations, this is in particular unfortunate due to the difficult structure of compact sets in Bochner-type spaces. In this paper, we propose an abstract function space and a suitable regularization- or Tychonov term for the objective functional which allows for the usual standard reasoning in the proof of existence of optimal controls and which admits a reasonably favorable structure in the characterization of optimal solutions via first order necessary conditions in, generally, the form of a variational inequality of obstacle-type in time. We establish the necessary properties of the function space and the Tychonov term and derive the aforementioned variational inequality. The variational inequality can then be reformulated as a projection identity for the optimal control under additional assumptions. We give sufficient conditions on when these are satisfied. The considerations are complemented with a series of practical examples of possible constellations and choices in dependence on the varying control spaces required for the evolution equations at hand.
Appeared in
- J. Convex Anal., 27 (2020), pp. 443--485, DOI 10.20347/WIAS.PREPRINT.2576 .
Download Documents