WIAS Preprint No. 2358, (2016)

H2-dependent attachment kinetics and shape evolution in chemical vapor deposition graphene growth


  • Meca Álvarez, Esteban
  • Shenoy, Vivek B.
  • Lowengrub, John

2010 Physics and Astronomy Classification Scheme

  • 68.43.Jk, 81.10.Aj, 81.15.Aa




Experiments on graphene growth through chemical vapor deposition (CVD) involving methane (CH4) and hydrogen (H2) gases reveal a complex shape evolution and a nonmonotonic dependence on the partial pressure of H2 (pH2). To explain these intriguing observations, we develop a microkinetic model for the stepwise decomposition of CH4 into mobile radicals and consider two possible mechanisms of attachment to graphene crystals: CH radicals to hydrogen-decorated edges of the crystals and C radicals to bare crystal edges. We derive an effective mass flux and an effective kinetic coefficient, both of which depend on pH2, and incorporate these into a phase field model. The model reproduces both the non-monotonic dependence on pH2 and the characteristic shapes of graphene crystals observed in experiments. At small pH2, growth is limited by the kinetics of attachment while at large pH2 growth is limited because the effective mass flux is small. We also derive a simple analytical model that captures the non-monotone behavior, enables the two mechanisms of attachment to be distinguished and provides guidelines for CVD growth of defect-free 2D crystals.

Appeared in

Download Documents