A Wavelet Algorithm for the Boundary Element Solution of a Geodetic Boundary Value Problem
Authors
- Rathsfeld, Andreas
ORCID: 0000-0002-2029-5761
2010 Mathematics Subject Classification
- 45L10 65R20 65N38
Keywords
- singular integral equation, collocation, wavelet algorithm.
DOI
Abstract
In this paper we consider a piecewise bilinear collocation method for the solution of a singular integral equation over a part of the surface of the earth. This singular equation is the boundary integral equation corresponding to the oblique derivative boundary problem for Laplace's equation. We introduce special wavelet bases for the spaces of test and trial functions. Analogously to well-known results on wavelet algorithms, the stiffness matrices with respect to these bases can be reduced to sparse matrices such that the assembling of the matrices and the iterative solution of the matrix equations become fast. Though the theoretical results apply only to integral equations with "smooth" solutions over "smooth" manifolds, we present numerical tests for a geometry as difficult as the surface of the earth.
Appeared in
- Comput. Methods Appl. Mech. Engrg. 157 (1998) pp. 267-287
Download Documents