WIAS Preprint No. 1972, (2014)
Reverse inequalities for slowly increasing sequences and functions
Authors
- Stephan, Holger
ORCID: 0000-0002-6024-5355
2010 Mathematics Subject Classification
- 26D15 35A23
Keywords
- reverse inequalities, slowly increasing sequences, slowly increasing functions
DOI
Abstract
We consider sharp inequalities involving slowly increasing sequences and functions, i.e., functions $f(t)$ with $f'(t) leq 1$ and sequences $(a_i)$ with $a_i+1-a_i leq 1$. The inequalities are reverse to mean inequalities, for example. In the continuous case, integrals of powers are estimated by powers of integrals, whereas in the discrete case powers of sums are estimated by sums of powers of sums. The problem is connected with interpolation theory in Banach spaces, one of them $W^1,infty$.
Appeared in
- Octogone Math. Mag., 22 (2015) pp. 621--633.
Download Documents