Feel the heat: Nonlinear electrothermal feedback in organic LEDs
Authors
- Fischer, Axel
- Koprucki, Thomas
ORCID: 0000-0001-6235-9412 - Gärtner, Klaus
- Tietze, Max L.
- Brückner, Jacqueline
- Lüssem, Björn
- Leo, Karl
- Glitzky, Annegret
ORCID: 0000-0003-1995-5491 - Scholz, Reinhard
2010 Mathematics Subject Classification
- 82D37 80A20
2008 Physics and Astronomy Classification Scheme
- 81.05.Fb 85.60.Jb 72.80.Le
Keywords
- Organic light emitting diodes, Joule self-heating, negative differential resistance, device temperature, luminance
DOI
Abstract
For lighting applications, Organic light-emitting diodes (OLED) need much higher brightness than for displays, leading to self-heating. Due to the temperature-activated transport in organic semiconductors, this can result in brightness inhomogeneities and catastrophic failure. Here, we show that due to the strong electrothermal feedback of OLEDs, the common spatial current and voltage distribution is completely changed, requiring advanced device modeling and operation concepts. Our study clearly demonstrates the effect of negative differential resistance (NDR) in OLEDs induced by self-heating. As a consequence, for increasing voltage, regions with declining voltages are propagating through the device, and even more interestingly, a part of these regions show even decreasing currents, leading to strong local variation in luminance. The expected breakthrough of OLED lighting technology will require an improved price performance ratio, and the realization of modules with very high brightness but untainted appearance is considered to be an essential step into this direction. Thus, a deeper understanding of the control of electrothermal feedback will help to make OLEDs in lighting more competitive.
Appeared in
- Appeared in: Adv. Funct. Mater., 24 (2014) pp. 3367--3374
Download Documents