ddfermi is an open-source software prototype which simulates drift diffusion processes in classical and organic semiconductors.

Key features

  • finite volume discretization of the semiconductor equations (van Roosbroeck system)
  • thermodynamically consistent Scharfetter-Gummel flux discretizations
  • general statistics: Fermi-Dirac, Gauss-Fermi, Blakemore and Boltzmann
  • multidimensional devices
  • based on pdelib and interfaced via Python or Lua


DOI for Citations and BibTex

http://doi.org/10.20347/WIAS.SOFTWARE.DDFERMI (also accessible via http://doi.org/10.20347/WIAS.SOFTWARE.14)

author = "Doan, D. H. and Farrell, P. and Fuhrmann, J. and Kantner, M. and Koprucki, T. and Rotundo, N.",
year = 2016,
title = "ddfermi -- a drift-diffusion simulation tool",
doi = {10.20347/WIAS.SOFTWARE.DDFERMI},
type = "Version 0.1.0",
institution = "Weierstrass Institute (WIAS)"
url = {http://doi.org/10.20347/WIAS.SOFTWARE.DDFERMI} }

Related Publications

  1. M. Bessemoulin-Chatard. A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme, Numerische Mathematik 121 (2012), pp. 637-670
  2. P. Farrell, N. Rotundo, H. Doan, M. Kantner, J. Fuhrmann, T. Koprucki. Numerical Methods for Drift-Diffusion Models, book chapter, accepted in: Handbook of Optoelectronic Device Modeling and Simulation, J. Piprek (ed), Taylor & Francis, to appear 2017, preprint
  3. J. Fuhrmann. Comparison and numerical treatment of generalised Nernst-Planck models, Computer Physics Communications 196 (2015), pp. 166-178, preprint
  4. K. Gärtner. Existence of bounded discrete steady state solutions of the van Roosbroeck system with monotone Fermi-Dirac statistic functions, Journal of Computational Electronics 3 (2015), pp. 773-787, preprint
  5. T. Koprucki, K. Gärtner. Discretization scheme for drift-diffusion equations with strong diffusion enhancement, Optical and Quantum Electronics 45 (2013), pp. 791-796, preprint
  6. T. Koprucki, N. Rotundo, P. Farrell, H. Doan, J. Fuhrmann. On Thermodynamic Consistency of a Scharfetter-Gummel Scheme Based on a Modified Thermal Voltage for Drift-Diffusion Equations with Diffusion Enhancement, Optical and Quantum Electronics, 47-6 (2015), pp. 1327-1332, preprint
  7. D. Scharfetter, H. Gummel. Large-signal analysis of a silicon Read diode oscillator, IEEE Transactions on Electron Devices 16 (1969), pp. 64-77