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Abstract. Driven by applications like organic semiconductors there is an in-
creased interest in numerical simulations based on drift-diffusion models with

arbitrary statistical distribution functions. This requires numerical schemes

that preserve qualitative properties of the solutions, such as positivity of densi-
ties, dissipativity and consistency with thermodynamic equilibrium. An exten-

sion of the Scharfetter-Gummel scheme guaranteeing consistency with thermo-

dynamic equilibrium is studied. It is derived by replacing the thermal voltage
with an averaged diffusion enhancement for which we provide a new explicit

formula. This approach avoids solving the costly local nonlinear equations

defining the current for generalized Scharfetter-Gummel schemes.

1. Introduction

In the stationary case, thermodynamic consistency for discretized drift-diffusion
equations means that the zero bias solution coincides with the thermodynamic
equilibrium. In the transient case, it means that for boundary conditions compatible
with the thermodynamic equilibrium the solutions converge to this equilibrium
when time tends to infinity. This property is important because its violation causes
non-physical dissipation in the steady state, see Bessemoulin-Chatard (2012). The
consistent approximation of dissipative effects is crucial for the solution of electro-
thermal models describing heating effects.

For the Boltzmann distribution Scharfetter and Gummel (1969) presented such
a consistent scheme. Strictly monotonically increasing non-Boltzmann distribution
functions lead to diffusion enhancement. Various extensions of the Scharfetter-
Gummel scheme are suggested to account for this effect, see Purbo et al (1989);
Jüngel (1995); Stodtmann et al (2012). Unfortunately, they are not thermodynam-
ically consistent. Koprucki and Gärtner (2013a,b) introduced a thermodynami-
cally consistent generalization in the spirit of Scharfetter and Gummel (1969) by
solving local Dirichlet problems. But it requires solving local nonlinear equations
during assembly and the iterative solution of the coupled system. Bessemoulin-
Chatard (2012) presented another extension of the Scharfetter-Gummel scheme
using a proper average of the nonlinear diffusion guaranteeing thermodynamic con-
sistency for a specific choice of the distribution function. We present an alternative
interpretation of her approach based on diffusion enhancement and give an explicit
formula for this average for a very general class of statistical distribution functions.

2. Drift-diffusion equations and diffusion enhancement

The dependence of the carrier densities n and p on the chemical potentials for
electrons and holes ηn and ηp are described by a statistical distribution function
F(η) as well as conduction and valence band densities of states Nc and Nv via state
equations n = NcF(ηn) and p = NvF(ηp). Typical choices for the distribution
function are F(η) = exp(η) (Boltzmann approximation) or F(η) = F1/2(η) (Fermi-
Dirac integral of order 1/2 describing degenerate semiconductors). The chemical
potentials are related to the quasi-Fermi potentials of electrons and holes ϕn and
ϕp through ηn = (q(ψ − ϕn)− Ec)/(kBT ) and ηp = (q(ϕp − ψ) + Ev)/(kBT ). Here
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q denotes the elementary charge, ψ the electrostatic potential, kB the Boltzmann
constant, T the temperature and Ec and Ev the conduction and valence band-edge
energies. We model a semiconductor device as a domain Ω ⊂ Rd where the carrier
transport in a self-consistent electrical field is described by a system of partial
differential equations. In the steady-state case this drift-diffusion system consists
of Poisson’s equation for ψ and continuity equations for electrons and holes:

−∇ · (ε0εr∇ψ) = q(C + p− n), x ∈ Ω,(1)

−∇ · jn = −qR, ∇ · jp = −qR, x ∈ Ω.(2)

Here, εr is the relative permittivity, C is the net doping profile, and R = R(n, p)
describes the recombination. Electron and hole currents can be expressed in terms
of quasi-Fermi potentials by jn = −qµnn∇ϕn, jp = −qµpp∇ϕp, or for any strictly
monotonic Fermi-like distribution function F(η) in drift-diffusion form

(3) jn = qµn

[
UT g

( n

Nc

)
∇n− n∇ψ

]
, jp = −qµp

[
UT g

( p

Nv

)
∇p+ p∇ψ

]
,

where µn and µp denote the electron and hole mobilities, resp., and UT = kBT/q
is the thermal voltage. The factor g can be defined in terms of densities, g(x) =
x(F−1)′(x), or in terms of the non-dimensionalized chemical potential

(4) gη(η) =
F(η)

F ′(η)
=

1(
logF(η)

)′ .
This factor is the so-called diffusion enhancement appearing as a density-dependent
modification factor in the generalized Einstein relation, see van Mensfoort and
Coehoorn (2008), leading in general to a non-linear diffusion coefficient. For the
Boltzmann distribution, F(η) = exp(η), we have g ≡ 1 and the current expressions
(3) reduce to the usual ones with linear diffusion.

3. Finite volume space discretization

We discretize the domain Ω using the Voronöı box based finite volume method
introduced in Macneal (1953), also known as “box method” due to Bank and Rose
(1987). It uses a simplical boundary conforming Delaunay grid (Si et al (2010))
which allows to obtain control volumes surrounding each given collocation point
xK by joining the circumcenters of the simplices containing it, see Fig. 1.

Let ∂K denote the boundary of the control volume K, and |ξ| the measure of
a geometrical object ξ. For each control volume K, we integrate the continuity
equation (2) and apply Gauss’s theorem to the integral of the flux divergence.
Restricting our considerations to the electron transport equation, we obtain

0 =

∫
∂K

jn · n +

∫
K

R dx =
∑

L neighbor of K

∫
∂K∩∂L

jn · nKLds+

∫
K

R dx

≈
∑

L neighbor of K

|∂K ∩ ∂L|
|xK − xL|

jn,KL + |K|R(nK , pK),

(5)

where n is the internal unit normal to ∂K and nKL is the internal unit normal
to the interface ∂K ∩ ∂L for each neighbor L of K. The values nK , pK are the
densities n and p at the collocation points xK , and jn,KL are approximations of
the (scaled by the edge length) normal currents through ∂K ∩ ∂L, see Fig. 1. In
the same manner the discretization of the Poisson equation can be obtained.
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xK xL

K
L

Figure 1. Collocation points (black), simplices (grey lines) and
control volumes (filled) in two space dimensions. Note the right
angle between the lines xKxL and ∂K ∩ ∂L, which allows to ap-
proximate the normal current through the face boundary ∂K ∩∂L
(green) by a finite difference expression along the edge xKxL (red).

4. Generalized Scharfetter-Gummel scheme

For the Boltzmann approximation the classical Scharfetter-Gummel scheme has
been derived by solving a two-point boundary value problem resulting from a pro-
jection of the continuity equation (neglecting recombination) onto the discretization
edge xKxL assuming constant current j = jn ·nKL and constant electrical field with
boundary values n|xK

= nK , n|xL
= nL, see Scharfetter and Gummel (1969). It

approximates jn,KL by

j = qµnUT

[
B
(
− δψ

UT

)
nK −B

( δψ
UT

)
nL

]
,(6)

where B(x) = x
exp(x)−1 is the Bernoulli function and δψ = ψK − ψL, (ψ|xK

=

ψK , ψ|xL
= ψL) is the electrostatic potential difference between neighboring cells,

see Fig. 1. This scheme is not only dissipative but also consistent with thermody-
namic equilibrium (j = 0 for ϕn = const.).

The idea to solve a local two-point boundary value problem in order to derive
current expressions has been generalized to nonlinear drift-diffusion problems by
Eymard et al (2006). It has been applied by Koprucki and Gärtner (2013a) to
the Blakemore distribution F(η) = 1

exp(−η)+γ , which for γ = 0.27 provides a good

approximation of F1/2 up to η ≤ 1.3, see Blakemore (1952). This approach leads to
a nonlinear equation w.r.t. j having a unique solution. In Koprucki and Gärtner
(2013b) this ansatz has been generalized to strictly monotonic distribution func-
tions. The resulting schemes are dissipative and consistent with thermodynamic
equilibrium. However, they require additional numerical effort for solving the local
non-linear equations to determine the currents jn,KL in every single step of the
iterative solution of the fully coupled van Roosbroeck system.

5. Scharfetter-Gummel scheme based on modified thermal voltage

As an alternative, we discuss a modified Scharfetter-Gummel scheme by replac-
ing the thermal voltage UT in the classical Scharfetter-Gummel expression with a
modified value U∗T = UT g(n/Nc) depending on the density. This idea is motivated
by the structure of the diffusion term in current expressions (3). Assuming an
averaged diffusion enhancement ḡKL = ḡKL(nK , nL) ∈ [g(nK), g(nL)] on the edge
xKxL this approach provides a current approximation of the form

(7) j = qµnUT ḡKL

[
B
(
− δψ

UT ḡKL

)
nK −B

( δψ

UT ḡKL

)
nL

]
.
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Figure 2. Comparison of the three different current approxima-
tions for the flux between neighboring cells for the Blakemore dis-
tribution F(η) = 1/(exp(−η) + 0.27) and fixed densities nK =
1.5Nc, nL = 3Nc: generalized Scharfetter-Gummel scheme ac-
cording to Koprucki and Gärtner (2013a) (solid line), Scharfetter-
Gummel scheme with modified thermal voltage U∗T = UT ḡKL with
averaged diffusion enhancement ḡKL according to (8) (dashed line),
classical Scharfetter-Gummel (6) (dotted line). The minimal and
maximal values g(nK) and g(nL) of the diffusion enhancement de-
fine the grey shaded area, within which generalized and modified
Scharfetter-Gummel lies.

This kind of extension of the Scharfetter-Gummel scheme to Fermi-Dirac statistics
has been suggested using arithmetic (Purbo et al (1989); Jüngel (1995)) or geo-
metric (Stodtmann et al (2012)) averaging, leading in general to schemes which
are not consistent with the thermodynamic equilibrium (j = 0 for ϕn = const).
Bessemoulin-Chatard (2012) introduced for drift-diffusion equations with nonlin-
ear diffusion a proper local average guaranteeing consistency with thermodynamic
equilibrium. She provides an explicit formula for the special choice F = ην describ-
ing the high density limit of the Fermi-Dirac distribution. Following her ideas, we
obtain for any strictly monotonic statistical distribution function

(8) ḡKL =
F−1

(
nL

Nc

)
−F−1

(
nK

Nc

)
log(nL/Nc)− log(nK/Nc)

=
ηL − ηK

logF(ηL)− logF(ηK)
.

The definition in terms of the chemical potentials ηK , ηL on the right can be under-
stood as an approximation of the diffusion enhancement (4) given as a logarithmic
derivative by a differential quotient on the edge xKxL. The resulting scheme is
dissipative and consistent with thermodynamic equilibrium.

For the Blakemore distribution function different current approximations are de-
picted in Fig. 2. The scheme corresponding to the averaged diffusion enhancement
(8) provides a very good approximation to the generalized Scharfetter-Gummel
scheme, see Koprucki and Gärtner (2013a). Only this choice of the average ḡKL
guarantees consistency with thermodynamic equilibrium.

To study the influence of the discretization on the solution of the van Roos-
broeck system (1) and (2), the classical Scharfetter-Gummel scheme and the ap-
proach based on modified thermal voltage have been applied to a GaAs-based n-
doped/intrinsic/n-doped structure using a Blakemore distribution function, see Fig.
3. In the zero bias case the classical Scharfetter-Gummel scheme yields a numerical
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Figure 3. Comparison of numerical solutions for electro-
static potential and electron densities in an GaAs based n-
doped/intrinsic/n-doped structure: classical Scharfetter-Gummel
scheme (bullets) and the one based on modified thermal volt-
age U∗T = UT ḡKL according to (7),(8) (solid lines). Left: zero
bias. Right: applied voltage 0.5 V. The solutions for the modi-
fied scheme for zero bias are consistent with the thermodynamic
equilibrium (triangles) only obtained by the nonlinear Poisson
equation (1). Parameters: band gap Eg = 1.424 eV, density of
states Nc = 4.7 × 1017 cm−3, Nv = 9 × 1018 cm−3, mobilities
µn = 8500 cm2/(Vs), µn = 400 cm2/(Vs), relative permitivity
εr = 12.9, n-doping Nd = 1.65× 1018 cm−3.

solution which is noticeably different from the thermodynamic equilibrium obtained
by solving the discretized nonlinear Poisson equation. This difference is due to the
inconsistent approximation of the diffusion enhancement in the classical Scharfetter-
Gummel scheme in the case of nonlinear diffusion, see Fig. 2. The space charge
region at the n-doped-intrinsic interface is influenced by the strong diffusion en-
hancement at high carrier densities which is missing in the classical, unmodified
scheme. For an applied voltage the diffusion enhancement has a similar impact
on the solution, see Fig. 3, resulting in a higher current. The diffusion related
enhancement in current is roughly 9%.

6. Conclusion

The discretization of drift-diffusion equations with Fermi-like statistical distri-
bution functions requires a proper treatment of the nonlinear diffusion. We studied
an extension of the classical Scharfetter-Gummel scheme replacing the thermal
voltage by an enhanced value. It is defined by a proper local average of diffusion
enhancement that guarantees consistency with thermodynamic equilibrium which is
important in order to obtain accurate results. This approach is an alternative to the
costly generalized Scharfetter-Gummel schemes due to its simpler implementation
for various distribution functions.
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