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Abstract. Inspired by organic semiconductor models based on hopping trans-

port introducing Gauss-Fermi integrals a nonlinear generalization of the classi-
cal Scharfetter-Gummel scheme is derived for the distribution function F(η) =

1/(exp(−η) + γ). This function provides an approximation of the Fermi-Dirac

integrals of different order and restricted argument ranges. The scheme re-
quires the solution of a nonlinear equation per edge and continuity equation

to calculate the edge currents. In the current formula the density-dependent
diffusion enhancement factor, resulting from the generalized Einstein relation,

shows up as a weighting factor. Additionally the current modifies the argument

of the Bernoulli functions.

1. Introduction

Any strictly monotone non-Boltzmann statistics based state-equation for the car-
rier density in a semiconductor results in a generalized Einstein relation describing
the ratio of diffusion and drift current in thermodynamic equilibrium. Due to van
Mensfoort and Coehoorn (2008) this can be interpreted as a diffusion enhancement.
On the other hand looking at the problem from a variational formulation point of
view, see Albinus et al (2002) and references therein, the drift term is the modified
expression while the same generalized Einstein relation is fulfilled.

Following Scharfetter and Gummel (1969) one is interested in approximating
the net electron current in order to discretize the drift-diffusion equation describing
the carrier transport. In the classical Scharfetter-Gummel scheme the exponential
dependence of the carrier density on the chemical potential results in a current
expression consisting of a weighted difference of the carrier densities. Here, the
usual state equation n = NcF(η) for the carrier density in dependence on the
(non-dimensionalized) chemical potential η, Nc denotes the density of states, is
considered for the special distribution function

(1) F(η) =
1

e−η + γ
, 0 ≤ n ≤ Nc

γ
.

This approximation can be used for the Fermi-Dirac integral of order 1/2 with
γ = 0.27 and η < 1.3 (Blakemore (1952)). For γ = 1 it coincides with Fermi-Dirac
integral of order −1 describing zero-dimensional Fermi gases, namely hopping trans-
port between individual sites. Furthermore, it is the limit for vanishing disorder
σ of the Gauss-Fermi integral (Paasch and Scheinert (2010)), which is used to de-
scribe organic semiconductors (Coehoorn et al (2005)). The general situation is
depicted in Figs. 1 and 2.

The aim of this paper is to present a generalization of the Scharfetter-Gummel
scheme for the approximation of the net electron current governed by the carrier
density expression (1).
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Figure 1. Plot of distribution function F(η) = 1/(exp(−η) + γ)
in dependence of the dimensionless chemical potential η for differ-
ent values of the parameter γ. In the asymptotic limit η << −2
a Boltzmann behavior is observed. For γ = 0.27 a good approx-
imation of the Fermi-Dirac integral of order 1/2 for η < 1.3 is
provided, whereas the case γ = 1 corresponds to the limit of van-
ishing disorder of the Gauss-Fermi integral (Paasch and Scheinert
(2010)).

2. Carrier continuity equations and diffusion enhancement

The continuity equation for the electrons reads

∂n

∂t
− 1

q
∇ · Jn = −R,

with the current expression

(2) Jn = −qµnNcF(η)∇ϕn = −qnµn∇ψ + qDn∇n,

and (non-dimensionalized) chemical potential

(3) η =
q(ψ − ϕn) + Eref − Ec

kBT
,

where q denotes the elementary charge, µn the mobility, ϕn the quasi-Fermi po-
tential, ψ the electrostatic potential, kB Boltzmann’s constant, T the temperature,
Eref a reference energy for the quasi-Fermi potential and Ec the band-edge energy.
The mobility and the diffusion coefficient Dn fulfill the generalized Einstein relation

(4)
Dn

µn
=
kBT

q

n

Nc
(F−1)′

(
n

Nc

)
=:

kBT

q
g3

(
n

Nc

)
.

The factor g3 in the generalized Einstein relation is describing a diffusion enhance-
ment, see van Mensfoort and Coehoorn (2008). For our special choice of the distri-
bution function (1) the relation becomes

(5) g3(x) =
1

1− γx
,

while the current reads

Jn = −qnµn∇ψ + µnkBT
1

1− γ n
Nc

∇n.
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Figure 2. Plot of diffusion enhancement factor g3 in dependence
on the dimensionless chemical potential related to the distribution
function F(η) = (exp(−η)+γ)−1 for different values of the param-
eter γ. In the asymptotic limit η << −2 no diffusion enhancement
is observed (Boltzmann limit). Additionally, the diffusion enhance-
ment factor g3 related to the Fermi-Dirac integral of order 1/2 is
depicted.

3. Generalized Scharfetter-Gummel scheme

In the following we consider the one-dimensional case on the spatial interval
[xa, xb] and the following scaling of the equation: the potentials are given in units
of the thermal voltage UT = kBT

q and the current is given in units of

j0 = qµnNc
UT

xb − xa
.

The Scharfetter-Gummel discretization is derived by solving the equation(
qµnNcF

(
η(ϕn, ψ)

)
ϕ′n

)′
= 0,

on the interval [xa, xb] with the boundary values ϕn(xa) = ϕa and ϕn(xb) = ϕb.
The electrostatic potential ψ is assumed to be linearly dependent on x, the mobility
µn is taken to be an average value on the interval [xa, xb]. First integration yields
−qµnNcF

(
η(ϕn, ψ)

)
ϕ′n = j = const. Replacing the quasi-Fermi potential ϕn by

the chemical potential η using Eq. (3) the second integration results in an integral
equation for the unknown current j:∫ ηb

ηa

1
j
F(η) + δψ

dη = 1.

The boundary values are

ηa = F−1(na/Nc), ηb = F−1(nb/Nc),

and potential difference δψ is given by δψ = ψb − ψa. For details of this approach
see Eymard et al (2006). For the distribution function (1) this integral equation
leads to the following nonlinear, local equation for the edge current j:

(6) j = f(j, δψ) = B(δψ + γj)eηb −B(−(δψ + γj))eηa ,

where B(x) = x
ex−1 is the Bernoulli function. This is a fixed point equation for

unkown the edge current j for fixed values of the chemical potentials ηa and ηb and
3
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Figure 3. Solutions of fixed point equation (6) defining the cur-
rent for different values of the parameter γ for fixed values of the
chemical potentials ηa = −2.5, ηb = 0. Left: Graphical solution
of the fixed point eq. by intersection of the function f(j, δψ) with
j for δψ = −UT . Right: Variation of the self-consistent current
j(δψ) on the potential difference δψ.

the potential difference δψ. The function f(j, δψ) can be rewritten in the following
way:

f(j, δψ) = B(δψ + γj)eηb
(

1− eδψ+γj−(ηb−ηa)
)
.

The unique thermodynamic equilibrium (j = 0) is obtained for ϕa = ϕb. The
derivative

∂f

∂j
= γ

(
B′(δψ + γj)eηb +B′(−(δψ + γj))eηa

)
< 0

is strictly negative. Hence, the implicit function theorem applied to F (δψ, j) =
j − f(j, δψ) = 0 guarantees a unique and continuous solution j(δψ) by continu-
ation from the thermodynamic equilibrium. In particular this holds also for the
dependence on all parameters of the two-point boundary value problem, namely
for the chemical potentials ηa, ηb and for γ ≥ 0 describing the deviation from
the Boltzmann case. In Fig. 3 the graphical solution of the fixed point equation
(6) is illustrated for different values of γ for fixed chemical potentials ηa = −2.5,
ηb = 0 and a potential difference δψ = −UT . The dependence of the current on
the potential difference j(δψ) is also shown in Fig. 3.

Using the relation F−1(x) = − ln

(
1
x − γ

)
the current expression in terms of

densities is given by

(7) j = g3

(
nb
Nc

)
B(δψ + γj)

nb
Nc
− g3

(
na
Nc

)
B(−δψ − γj) na

Nc
.

Here, the density-dependent factor g3 related to the generalized Einstein relation (4)
shows up explicitly. For γ = 0 the well-known Scharfetter-Gummel expression is
reproduced. The expression (7) is indeed a modification of the Scharfetter-Gummel
current in two respects: on the one hand a non-symmetric rescaling by g3 and
on the other hand a shift of the potential difference δψ = ψb − ψa entering the
Bernoulli function by γj. For small deviations in the densities na, nb and close to the
thermodynamic equilibrium, Eq. (7) can be interpreted by rescaling the Boltzmann
current by a common factor g3(n̄), where n̄ has the meaning of averaged rescaled
density related either to a modified temperature or a self-consistent adapted density
of states Nc used in an outer fixed point iteration, see Bandelow et al (2005).
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Figure 4. Comparison of ’Boltzmann’ (γ = 0) and ’Fermi’
(γ = 0.27) currents in dependence on the potential difference
δψ = ψb−ψa for two choices of fixed densities na = Nc, nb = eNc
and na = Nc/e, nb = eNc as given by the solution of equation
(7). The corresponding values of the quasi-Fermi potentials change
accordingly. For pure diffusion (δψ = 0) the ’Fermi’ current is
roughly by a factor of two larger than the ’Boltzmann’ current.
The asymptotic behavior is dominated by the drift current.

To illustrate the influence of the statical distribution on the current again, in
Fig. 4 the dependence of the current on the potential difference δψ = ψb − ψa
is shown for the Boltzmann case (γ = 0) and for the distribution function (1)
for γ = 0.27 with two different ratios of the densities na/nb. The corresponding
chemical potentials are in the range where Eq. (1) provides a good approximation of
the Fermi-Dirac integral of order 1/2, see Fig. 1. Here, the Fermi statistics results
in an increased current. Please note, that both cases (Figs. 3 and 4) are not a
result of a self-consistent solution of the complete model equations used for device
simulation (van Roosbroeck equations).

From the implementation point of view, the essential change compared to the
classical scheme is now the solution of the nonlinear equation (7) for every edge of
the spatial discretization during the assembly of each continuity equation.

4. Conclusion

For a restricted range of arguments of the Fermi-Dirac integral of order 1/2 a
simple to implement, generalized Scharfetter-Gummel scheme has been derived.
The effort is small compared with the introduction of an additional outer iteration.
The local nonlinear equations for calculation of the edge currents can be solved due
to the monotonicity properties of the Bernoulli function.
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