WIAS Preprint No. 1136, (2006)

A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems



Authors

  • Mielke, Alexander
    ORCID: 0000-0002-4583-3888
  • Ortiz, Michael

2010 Mathematics Subject Classification

  • 35K90 49J40 49S05

Keywords

  • Gamma convergence, relaxation, energetic formulation, rate-independent problems, microstructure

Abstract

This work is concerned with the reformulation of evolutionary problems in a weak form enabling consideration of solutions that may exhibit evolving microstructures. This reformulation is accomplished by expressing the evolutionary problem in variational form, i.e., by identifying a functional whose minimizers represent entire trajectories of the system. The particular class of functionals under consideration is derived by first defining a sequence of time-discretized minimum problems and subsequently formally passing to the limit of continuous time. The resulting functionals may be regarded as elliptic regularizations of the original evolutionary problem. We find that the $Gamma$-limits of interest are highly degenerate and provide limited information regarding the limiting trajectories of the system. Instead we seek to characterize the minimizing trajectories directly. The special class of problems characterized by a rate-independent dissipation functional is amenable to a particularly illuminating analysis. For these systems it is possible to derive a priori bounds that are independent of the regularizing parameter, whence it is possible to extract convergent subsequences and find the limiting trajectories. Under general assumptions on the functionals, we show that all such limits satisfy the energetic formulation (S) & (E) for rate-independent systems. Moreover, we show that the accumulation points of the regularized solutions solve the associated limiting energetic formulation.

Appeared in

  • ESAIM Control Optim. Calc. Var., 14 (2008) pp. 494--516.

Download Documents