WIAS Preprint No. 4, (1992)

Spectral properties of one-dimensional Schroedinger operators with potentials generated by substitutions.



Authors

  • Bovier, Anton
  • Ghez, Jean-Michel

2010 Mathematics Subject Classification

  • 35J10

Keywords

  • Schrödinger Operator

DOI

10.20347/WIAS.PREPRINT.4

Abstract

We investigate one-dimensional discrete Schrödinger operators whose potentials are invariant under a substitution rule. The spectral properties of these operators can be obtained from the analysis of a dynamical system, called the trace map. We give a careful derivation of these maps in the general case and exhibit some specific properties. Under an additional, easily verifiable hypothesis concerning the structure of the trace map we present an analysis of their dynamical properties that allows us to proof that the spectrum of the underlying Schrödinger operator is singular and supported on a set of zero Lebesgue measure. A condition allowing to exclude point spectrum is also given. The application of our theorems is explained on a series of examples.

Appeared in

  • Commun. Math. Phys. 158 (1993), pp. 45-66

Download Documents