WIAS Preprint No. 2766, (2020)

Fast reaction limits via $Gamma$-convergence of the flux rate functional


  • Peletier, Mark A.
  • Renger, D. R. Michiel
    ORCID: 0000-0003-3557-3485

2010 Mathematics Subject Classification

  • 05C21 34E05 35A15 60F10 60J27


  • Fast reaction limit, quasi steady state approximation, Gamma convergence, finite graph




We study the convergence of a sequence of evolution equations for measures supported on the nodes of a graph. The evolution equations themselves can be interpreted as the forward Kolmogorov equations of Markov jump processes, or equivalently as the equations for the concentrations in a network of linear reactions. The jump rates or reaction rates are divided in two classes; `slow' rates are constant, and `fast' rates are scaled as 1/∈, and we prove the convergence in the fast-reaction limit ∈ → 0. We establish a Γ-convergence result for the rate functional in terms of both the concentration at each node and the flux over each edge (the level-2.5 rate function). The limiting system is again described by a functional, and characterizes both fast and slow fluxes in the system. This method of proof has three advantages. First, no condition of detailed balance is required. Secondly, the formulation in terms of concentration and flux leads to a short and simple proof of the Γ-convergence; the price to pay is a more involved compactness proof. Finally, the method of proof deals with approximate solutions, for which the functional is not zero but small, without any changes.

Download Documents