[Next]:  Numerical analysis of complex stochastic models  
 [Up]:  Projects  
 [Previous]:  Statistical data analysis  
 [Contents]   [Index] 


Subsections



Applied mathematical finance

Collaborator: D. Belomestny, S. Jaschke, A. Kolodko, D. Mercurio, G.N. Milstein, O. Reiß, J. Schoenmakers, V. Spokoiny, J.-H. Zacharias-Langhans

Cooperation with: C. Byrne (Springer, Heidelberg), R. Cont (Ecole Polytechnique, Palaiseau, France), B. Coffey (Merrill Lynch, London, UK), H. Föllmer, W. Härdle, U. Küchler, R. Stehle (Humboldt-Universität (HU) zu Berlin), H. Friebel (Finaris, Frankfurt am Main), P. Glasserman (Columbia University, New York, USA), H. Haaf, U. Wystup (Commerzbank AG, Frankfurt am Main), A.W. Heemink, E.v.d. Berg, D. Spivakovskaya (Technical University Delft, The Netherlands), F. Jamshidian (NIB Capital Den Haag, The Netherlands), J. Kampen (Ruprecht-Karls-Universität, Heidelberg) J. Kienitz (Postbank, Bonn), P. Kloeden (Johann Wolfgang Goethe-Universität Frankfurt am Main), C. März, D. Dunuschat, T. Sauder, S. Wernicke (Bankgesellschaft Berlin AG, Berlin), B. Matzack (Kreditanstalt für Wiederaufbau (KfW), Frankfurt am Main), S. Nair (Chapman & Hall, London, UK), M. Schweizer (Universität München / ETH Zürich), S. Schwalm (Reuters FS, Paris, France), G. Stahl (Bundesaufsichtsamt für das Kreditwesen (BAFin) Bonn), D. Tasche (Deutsche Bundesbank, Frankfurt am Main)

Supported by: BMBF: ``Effiziente Methoden zur Bestimmung von Risikomaßen'' (Efficient methods for valuation of risk measures),
DFG: DFG-Forschungszentrum ``Mathematik für Schlüsseltechnologien'' (Research Center ``Mathematics for Key Technologies''), project E5; SFB 373 ``Quantifikation und Simulation ökonomischer Prozesse'' (Quantification and simulation of economic processes),
Reuters Financial Software, Paris

Description:

The central theme of the project Applied mathematical finance is the quantitative treatment of problems raised by the financial industry, based on innovative methods and algorithms developed in accordance with fundamental principles of mathematical finance. These problems include stochastic modeling of financial data, valuation of complex derivative instruments (options), and risk analysis. The methods and algorithms developed benefit strongly from the synergy with the projects Statistical data analysis and Numerical methods for stochastic models.


1. Methods for pricing and hedging of non-standard derivatives

(D. Belomestny, A. Kolodko, G.N. Milstein, O. Reiß, J. Schoenmakers).

The valuation of financial derivatives based on arbitrage-free asset pricing involves non-trivial mathematical problems in martingale theory, stochastic differential equations, and partial differential equations. While its main principles are established (Harrison, Pliska, 1981), many numerical problems remain such as the numerical valuation of (multidimensional) American equity options and the valuation of Bermudan-style derivatives involving the term structure of interest rates (LIBOR models), [6]. The valuation and optimal exercise of American and Bermudan derivatives is one of the most important problems both in theory and practice, see, e.g., [1]. American options are options contingent on a set of underlyings which can be exercised at any time in some prespecified future time interval, whereas Bermudan options may be exercised at a prespecified discrete set of future exercise dates. In general, the fair price of an American- or Bermudan-style derivative can be represented as the solution of an optimal stopping problem.

2. Robust interest rate (LIBOR) modeling and calibration

(O. Reiß, J. Schoenmakers).

Robust calibration of the LIBOR market model, a popular benchmark model for effective forward interest rates ([5], [17], [28]), to liquidly traded instruments such as caps and swaptions has been a challenging problem for several years. In particular, calibration methods which avoid the use of historical data are very desirable, both from a practical and a more fundamental point of view. The dynamics of the LIBOR model is given by

dLi = - $\displaystyle \sum_{{j=i+1}}^{{n-1}}$$\displaystyle {\frac{{\delta_jL_iL_j  \sigma_i\sigma_j\rho_{ij}}}{{%
1+\delta_jL_j}}}$ dt + Li $\displaystyle \sigma_{i}^{}$dW(n)i, (1)
where the LIBOR/EurIBOR processes Li are defined in [t0, Ti], with $ \delta_{i}^{}$ = Ti+1 - Ti being day count fractions and $ \sigma_{i}^{}$ being scalar deterministic volatility functions. Further, (W(n)i(t) | t0 $ \leq$ t $ \leq$ Tn-1) are correlated Wiener processes under the so-called terminal measure $ \mbox{$\rm {I\!P}$}$n, with deterministic local covariance structure

< dW(n)i, dW(n)j > = $\displaystyle \rho_{{ij}}^{}$dt.

In order to construct a stable calibration procedure, we first introduce the following economically motivated parametrization of the scalar volatility and correlation function,
$\displaystyle \sigma_{i}^{}$(t) : = cig(Ti - t)  
$\displaystyle \rho_{{ij}}^{}$(t) : = $\displaystyle \rho^{{(0)}}_{{i-m(t),j-m(t)}}$,        m(t) : = min{m : Tm $\displaystyle \geq$ t},  

with a simple parametric function g(s) : = g$\scriptstyle \infty$ + (1 - g$\scriptstyle \infty$ + as)exp(- bs), and, for example, one of the correlation structures developed by Schoenmakers & Coffey in [40], [41], based on some semi-parametric framework, [19], [39].
$\displaystyle \rho_{{ij}}^{}$ = exp$\displaystyle \left[\vphantom{-\frac{\vert j-i\vert}{m-1}
\left(-\ln\rho_{\infty}
+\right.}\right.$ - $\displaystyle {\frac{{\vert j-i\vert}}{{m-1}}}$$\displaystyle \left(\vphantom{-\ln\rho_{\infty}
+}\right.$ -ln$\displaystyle \rho_{{\infty}}^{}$ +  
    $\displaystyle \left.\vphantom{\left.+\eta\frac{i^2+j^2+ij-3mi-3mj+3i+3j+2m^2-m-4}{(m-2)(m-3)}
\right)}\right.$$\displaystyle \left.\vphantom{+\eta\frac{i^2+j^2+ij-3mi-3mj+3i+3j+2m^2-m-4}{(m-2)(m-3)}
}\right.$ + $\displaystyle \eta$$\displaystyle {\frac{{i^2+j^2+ij-3mi-3mj+3i+3j+2m^2-m-4}}{{(m-2)(m-3)}}}$$\displaystyle \left.\vphantom{+\eta\frac{i^2+j^2+ij-3mi-3mj+3i+3j+2m^2-m-4}{(m-2)(m-3)}
}\right)$$\displaystyle \left.\vphantom{\left.+\eta\frac{i^2+j^2+ij-3mi-3mj+3i+3j+2m^2-m-4}{(m-2)(m-3)}
\right)}\right]$,  
    $\displaystyle \eta$ > 0, 0 < $\displaystyle \eta$ < - ln$\displaystyle \rho_{{\infty}}^{}$.  

The thus designed volatility structure relies on sensible assumptions regarding the behavior of forward rates and implies a kind of time shift invariance when ci $ \equiv$ c. Calibration of this volatility structure to a set of market cap and swaption volatilities comes down to fit the model cap and swaption volatilities to a rather flat surface of market quotes, see the first picture in Figure 3.

The LIBOR model is in a sense designed to price cap(let)s in closed form. Indeed, for any function g and correlation structure $ \rho^{{(0)}}_{}$, caps can be matched perfectly by appropriate choice of the coefficients ci. However, since caps are in fact one period swaptions, the model swaption volatility surface intersects with the market volatility surface at the 1 period swaption line, regardless of the choice of g and $ \rho^{{(0)}}_{}$. See the second picture in Figure 3 for a model swapvol surface for some rather arbitrary choice of g and $ \rho^{{(0)}}_{}$. This is in fact an intrinsic stability problem (see also [37]), since basically two explaining powers are available determining one rotation angle. We have resolved this problem by introducing economically motivated regularizations of the least squares object function and implemented the so developed stable procedures for testing against market data. Meanwhile our calibration methods are gaining interest, appearing from consulting requests (Reuters FS, Bankgesellschaft Berlin AG) and a currently developing book project ([38]).

Fig. 3: Market swaption vols and model vols for some typical but arbitrary choice of g,$ \rho^{{(0)}}_{}$
\makeatletter
\@ZweiProjektbilderNocap[h]{7cm}{MSV.eps}{g1R1.eps}
\makeatother

3. Volatility estimation of financial time series

(D. Mercurio, V. Spokoiny).

In cooperation with the project Statistical data analysis, new techniques for the volatility estimation for financial time series have been developed, [12], [21], [30].

4. Methods for risk management

(S. Jaschke, D. Mercurio, O. Reiß, J. Schoenmakers, V. Spokoiny, J.-H. Zacharias-Langhans).

Since the Basel Committee's proposal for ``An internal model-based approach to market risk capital requirements'' (1995) was implemented in national laws, banks have been allowed to use internal models for estimating their market risk and have been able to compete in the innovation of risk management methodology. Since all banks are required to hold adequate capital reserves with regard to their outstanding risks, there has been a tremendous demand for risk management solutions. A similar ``internal ratings-based approach'' is planned for the controlling of credit risk in the ``Basel II'' process, which is due to be implemented in national laws by 2006. Meanwhile, credit derivatives play an important role as vehicle for banks to transform credit risk into de jure market risk and to potentially lower the required reserves. Such problems of risk measurement and risk modeling are the subject of the research on ``Mathematical methods for risk management''. This research is supported by the BMBF project ``Efficient methods for valuation of risk measures'', which continued in 2003 in cooperation with the Bankgesellschaft Berlin AG. Problems of both market and credit risk from the viewpoint of supervisory authorities are being worked on in cooperation with the BAFin.

Although the basic principles of the evaluation of market risks are now more or less settled, e.g., [2], [8], [9], [29], in practice many thorny statistical and numerical issues remain to be solved. Specifically the industry standard, the approximation of portfolio risk by the so-called ``delta-gamma normal'' approach, can be criticized because of the quadratic loss approximation and the Gaussian assumptions. Further, in the context of the ``Basel II'' consultations fundamental questions arise in the area of Credit Risk Modeling.

5. Monte Carlo methods in finance

(G.N. Milstein, J. Schoenmakers, V. Spokoiny).

Monte Carlo methods are very important in the field of applied mathematical finance, and we present here some interesting applications.

References:

  1. F. AITSAHLIA, P. CARR, American options: A comparison of numerical methods, in: Numerical Methods in Finance, L.C.G. Rogers, D. Talay, eds., Cambridge University Press, 1997, pp. 67-87.

  2. P. ARTZNER, F. DELBAEN, J.M. EBER, D. HEATH, Coherent measures of risk, Math. Finance, 9 (1998), pp. 203-228.

  3. D. BELOMESTNY, G.N. MILSTEIN, Monte Carlo evaluation of American options using consumption processes, working paper, 2003.

  4. R.C. BOSE, A. BUSH, Orthogonal arrays of strength two and three, Ann. Math. Statistics, 23 (1952), pp. 508-524.

  5. A. BRACE, D. GATAREK, M. MUSIELA, The market model of interest rate dynamics, Math. Finance, 7 (1997), pp. 127-155.

  6. M. BROADIE, J. DETEMPLE, Recent advances in numerical methods for pricing derivative securities, in: Numerical Methods in Finance, L.C.G. Rogers, D. Talay, eds., Cambridge University Press, 1997, pp. 43-66.

  7. CREDIT SUISSE FIRST BOSTON, CreditRisk+ : A Credit Risk Management Framework, available at http://www.csfb.com/creditrisk, 1997.

  8. P. EMBRECHTS, C. KLÜPPELBERG, T. MIKOSCH, Modelling Extremal Events, Springer, Berlin, 1997.

  9. J. FRANKE, W. HÄRDLE, G. STAHL, Measuring Risk in Complex Stochastic Systems, Lect. Notes Stat., vol. 147, Springer, New York, 2000.

  10. P. GAPEEV, M. REISS, A note on optimal stopping in models with delay, Discussion Paper no. 47 of Sonderforschungsbereich 373, Humboldt-Universität zu Berlin, 2003.

  11. P. GLASSERMAN, Monte Carlo Methods in Financial Engineering, Springer, Berlin, 2003.

  12. E. GOBET, M. HOFFMANN, M. REISS, Nonparametric estimation of scalar diffusions based on low frequency data, to appear in: Ann. Statist.

  13. H. HAAF, O. REISS, J.G.M. SCHOENMAKERS, Numerically stable computation of CreditRisk+, WIAS Preprint no. 846, 2003, to apper in: Journal of Risk.

  14. A. HAMEL, Risikomaße und ihre Anwendungen, to appear as Report of Martin-Luther-Universität Halle-Wittenberg.

  15. M.B. HAUGH, L. KOGAN, Pricing American options: A duality approach, working paper 2001, to appear in: Oper. Res.

  16. W. HÄRDLE, H. HERWARTZ, V. SPOKOINY, Time inhomogeneous multiple volatility modelling, Discussion Papers of Interdisciplinary Research no. 7, Humboldt-Universität zu Berlin, SFB 373, 2001.

  17. F. JAMSHIDIAN, LIBOR and swap market models and measures, Finance Stoch., 1 (1997), pp. 293-330.

  18. A. KOLODKO, J.G.M. SCHOENMAKERS, An efficient dual Monte Carlo upper bound for Bermudan-style derivatives, WIAS Preprint no. 877, 2003.

  19. O. KURBANMURADOV, K.K. SABELFELD, J.G.M. SCHOENMAKERS, Lognormal approximations to LIBOR market models, J. Comput. Finance, 6 (2002), pp. 69-100.

  20. P. MATHÉ, Using orthogonal arrays to valuate $ \Delta$ - $ \Gamma$-normal, working paper, 2003.

  21. D. MERCURIO, V. SPOKOINY, Estimation of time dependent volatility via local change point analysis, WIAS Preprint no 904, 2004.

  22. G.N. MILSTEIN, O. REISS, J.G.M. SCHOENMAKERS, A new Monte Carlo method for American options, earlier version: WIAS Preprint no. 850, 2003, to appear in: Int. J. Theor. Appl. Finance.

  23. G.N. MILSTEIN, J.G.M. SCHOENMAKERS, Monte Carlo construction of hedging strategies against multi-asset European claims, Stochastics Stochastics Rep., 73 (2002), pp. 125-157.

  24. G.N. MILSTEIN, J.G.M. SCHOENMAKERS, V. SPOKOINY, Forward-reverse representations for Markov chains, working paper, 2003.

  25.          , Transition density estimation for stochastic differential equations via forward-reverse representations, WIAS Preprint no. 680, 2001, to appear in: Bernoulli.

  26. G.N. MILSTEIN, M.V. TRETYAKOV, Numerical analysis of Monte Carlo finite difference evaluation of Greeks, WIAS Preprint no. 808, 2003.

  27.          , Simulation of a space-time bounded diffusion, Ann. Appl. Probab., 9 (1999), pp. 732-779.

  28. K.R. MILTERSEN, K. SANDMANN, D. SONDERMANN, Closed-form solutions for term structure derivatives with lognormal interest rates, J. Finance, 52 (1997), pp. 409-430.

  29. R.B. NELSON, An Introduction to Copulas, Springer, New York, 1999.

  30. M. REISS, Nonparametric volatility estimation on the real line from low-frequency observations, 2003, submitted.

  31. O. REISS, Dependent sectors and an extension to incorporate market risk, to appear in: CreditRisk+ in the Banking Industry, M. Gundlach, F. Lehrbass, eds., Springer, Berlin Heidelberg, 2004.

  32.          , Fourier inversion algorithms for generalized CreditRisk+ models and an extension to incorporate market risk, WIAS Preprint no. 817, 2003.

  33.          , Fourier inversion techniques for CreditRisk+, in: CreditRisk+ in the Banking Industry, F. Lehrbass, M. Gundlach, eds., Springer, Berlin Heidelberg, 2004.

  34.          , Mathematical methods for the efficient assessment of market and credit risk, Ph.D. thesis, Universität Kaiserslautern, 2003,
    available at http://kluedo.ub.uni-kl.de/volltexte/2003/1621.

  35. O. REISS, U. WYSTUP, Computing option price sensitivities using homogeneity and other tricks, in: Foreign Exchange Risk: Models, Instruments and Strategies, Risk Books, London, 2002, pp. 127-142, and The Journal of Derivatives, 9 (2001), pp. 41-53.

  36. L.C.G. ROGERS, Monte Carlo valuation of American options, Math. Finance, 12 (2002), pp. 271-286.

  37. J.G.M. SCHOENMAKERS, Calibration of LIBOR models to caps and swaptions: A way around intrinsic instabilities via parsimonious structures and a collateral market criterion, WIAS Preprint no. 740, 2002.

  38.          , Robust Libor Modelling and Pricing of Derivatives Products, in preparation.

  39. J.G.M. SCHOENMAKERS, B. COFFEY, LIBOR rate models, related derivatives and model calibration, WIAS Preprint no. 480, 1999.

  40.          , Stable implied calibration of a multi-factor LIBOR model via a semi-parametric correlation structure, WIAS Preprint no. 611, 2000.

  41.          , Systematic generation of parametric correlation structures for the LIBOR market model, Int. J. Theor. Appl. Finance, 6 (2003), pp. 507-519.

  42. D. TASCHE, Capital allocation with CreditRisk+, to appear in: CreditRisk+ in the Banking Industry, F. Lehrbass, M. Gundlach, eds., Springer, Berlin Heidelberg, 2004.



 [Next]:  Numerical analysis of complex stochastic models  
 [Up]:  Projects  
 [Previous]:  Statistical data analysis  
 [Contents]   [Index] 

LaTeX typesetting by I. Bremer
2004-08-13