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�It is a very sad thing that nowadays
there is so little useless information.�

Oscar Wilde

published in Saturday Review (1894)

Today: Analysis of gene-expression data?

  

p = 11 940   genes

After analysis

p = 462 interesting genes

? Lu et al. (2004): � Gene regulation and DNA damage in the ageing human brain�
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The linear model
Variable selection in the linear model

I. The Linear Model:
Focus on Variable Selection and Importance
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The linear model
Variable selection in the linear model

The linear model (population level)

Y︸︷︷︸
1×1

= βt︸︷︷︸
1×p

X︸︷︷︸
p×1

+ ε︸︷︷︸
1×1

= β1X1 + ...+ βpXp + ε

I Y : 1 dependent variable or response (1× 1, with E (Y ) = 0)
I X : p explaining variables (p × 1, with E (X ) = 0,Var(X ) = V )
I β: p regression coe�cients (1× p)

I Interpretation: βi , with i ∈ {1, ..., p}, gives the in�uence
of Xi on Y conditional on all the other p − 1 variables

I The residual sum of squares is optimized by:

β = cov(X )−1cov(XY ) = Σ−1XXΣXY

I ε: Irreducible error with E (ε) = 0
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The linear model
Variable selection in the linear model

Strategies for determining a �good� model
1. Variable selection

I Information criteria based on penalized residual sum of squares
[George (2000)], e.g. AIC, BIC, Cp, RIC etc.

I Penalized regression models like Lasso [Tibshirani (1996)],
Elastic Net [Zou and Hastie (2005)],
SCOUT [Witten and Tibshirani (2009)] etc.

2. Variable importance
I Marginal Correlation between X and Y

e.g. Sure Independence Screening [Fan and Lv (2008)]
I Metrics for relative importance, like squared standardized β,

Pratt's metric or other decompositions of R2

For a comprehensive overview see Grömping (2006).

Decorrelation o�ers a new quantity for
variable selection and variable importance.
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Presenting the CAR-score
Properties of the CAR-score
The CAR-score in practice

How decorrelation leads to a new tool

for variable selection and quantifying variable importance:

II. Presenting Correlation Adjusted CoRRelation,
the CAR-score
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Presenting the CAR-score
Properties of the CAR-score
The CAR-score in practice

De�nition of the CAR-score

We de�ne the p-dimensional CAR-score vector

(Correlation Adjusted CoRRelation) ω as:

ω︸︷︷︸
p×1

= P
−1/2︸ ︷︷ ︸
p×p

PXY︸︷︷︸
p×1

I P: Correlation of X

I PXY : Vector of marginal correlations between X and Y

Criterion for variable importance:

We propose to use ω2(i) to quantify the importance

of variable Xi in the linear model, with i ∈ 1, ..., p
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Properties of the CAR-score I

1. Deduction from the best linear predictor:

The CAR-score quanti�es the in�uence of a decorrelated and

standardized variable on the best linear predictor Y ?.

2. Reformulating the decomposition of variance:

The CAR-score leads to a coherent additive decomposition

of the proportion of variance explained (on the sample level:

coe�cient of determination, R2).

3. The CAR-score as a quantity for variable importance
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1. The best linear predictor
Y ? = βt︸︷︷︸

Σt
XY

Σ−1
XX

X

After some simple transformations the standardized best linear

predictor Y ? simpli�es to the following decomposition:

Y ?/σY = ωt δ(X )

I The decorrelated and standardized data δ(X ); Cov(δ(X )) = diag(1)

δ
(
X
)︸ ︷︷ ︸

p×1

= P
−1/2

V
−1/2

X

I The correlation between X and Y adjusted for the correlation

among X :

ω︸︷︷︸
p×1

= P
−1/2

PXY
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2. Decomposition of the proportion of variance explained

I Total variance: Var(Y ) = σ2Y
I Explained variance:

Var(Y ?) = σ2YVar(ωtδ(X ))

= σ2Yω
t Var(δ(X ))︸ ︷︷ ︸

diag(1)

ω

= σ2Yω
tω

I The decomposition of variance rewritten in CAR-scores:

Total variance︷ ︸︸ ︷
Var(Y ) =

Explained variance︷ ︸︸ ︷
Var(Y ?) +

Unexplained variance︷ ︸︸ ︷
Var(Y − Y ?)

σ2Y = σ2Y (ωtω) + σ2Y (1− ωtω)
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2. Decomposition of the proportion of variance explained II
Proportion of variance explained:

Explained Variance

Total Variance
=

σ2Yω
tω

σ2
Y

= ωtω

=
∑p

i=1 ω
2
i

I The sum of squared CAR-scores adds up to
the proportion of variance explained.

I Note: In the set-up of discriminant analysis:
The sum of squared correlation adjusted t (CAT)-scores
[Zuber and Strimmer (2009)] adds up to Hotelling's T .
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3. The CAR-score as quantity for variable importance

1. Proper decomposition of the proportion of variance explained:

Explained Variance

Total Variance
=

p∑
i=1

ω2
i

2. Non-negativity: ω2
i ≥ 0

3. Inclusion-Property: ω2
i 6= 0 if βi 6= 0

4. Exclusion-Property: ω2
i = 0 if βi = 0

The CAR-score ful�lls the Exclusion-Property only

if there is no correlation between the null variables with β = 0

and non-null variables with β 6= 0
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Properties of the CAR-score II

4. Connections to other quantities for variable importance:

Correlation︷ ︸︸ ︷
PXY

P
−1/2
→

CAR-score︷ ︸︸ ︷
P
−1/2

PXY = ω
P
−1/2
→

Std. Regression Coe�.︷ ︸︸ ︷
P
−1/2ω = βstd

5. Oracle CAR-score: If we know

I which variables are null or non-null and
I that there is no correlation between null and non-null variables

then any consistent estimate of the CAR-score ω = P
1/2βstd

equals 0 for the null variables:

ω =

(
Pnon-null 0

0 Pnull

)1/2

︸ ︷︷ ︸
P
1/2

(
βstd,non-null

0

)
︸ ︷︷ ︸

βstd

=

(
ωnon-null

0

)
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Properties of the CAR-score III

6. Distribution of the empirical squared CAR-score under H0:

ω̂2(i) follows Beta(12 ,
n−2
2 )

7. Grouping Property: When two variables Xi and Xj are

correlated, their CAR-scores ωi and ωj tend to be equal:

| ρ(Xi ,Xj) |→ 1 ⇒ ω2
i − ω2

j → 0

8. Orthogonal Property (The CAR-score for a group of variables):

The importance of a group of variables 1, ..., g is given by:

ω2
group =

g∑
i=1

ω2
i = ω2

1 + ...+ ω2
g
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The CAR-score is a population quantity;
thus it is not tied to any inference framework.
Any kind of �good� estimate can be used.

A simple recipe for variable selection:

1. (If p is too large, a prescreening is advisable.

Limitation: Estimation of the p × p correlation matrix P)

2. Estimate the CAR-scores:
I Large sample case (n >> p): Empirical estimates
I Small n, large p: Regularized estimates, like shrinkage

procedures or penalized maximum likelihood estimates

3. Rank the variables according to their squared CAR-score

4. Choose a suitable cut-o� (a �xed cut-o� corresponds

to information criteria like AIC, BIC, etc)

5. Re�t the linear model based on the remaining variables
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Simulation
Analysis of benchmark data

IV. Results

All analysis is performed in R

I care: Empirical and shrinkage estimates for the CAR-score
I relaimpo: Relative importance of variables
I scout: Implementation of Lasso and Elastic Net
I fdrtool: False (non) discovery rate
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Simulation
Analysis of benchmark data

Simulation: The Set-up

I X is (multivariate) Gaussian distributed: X ∼ MvN(0,R)

I ε is Gaussian distributed: ε ∼ N(0, σ2 = 9)

I Set-up 1:
I Low dimensional: p = 8 and n = 50− 100
I beta=c(3,1.5,0,0,2,0,0,0)
I Autocorrelation: ρ(xi , xj) = 0.5|i−j|

I Signal variance to noise variance: 2.36

I Set-up 2:
I Large p, small n: p = 40 and n = 10− 50
I p = 10 non-null variables with

beta[1:10]=c(3,3,3,3,3,-2,-2,-2,-2,-2)

and p = 30 null variables
I Pairwise correlation of ρ = 0.9 among the non-null variables
I Signal variance to noise variance: 3.22
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Simulation: Comparing the results

I What to compare?

1. Variable selection:
Mean model error, median model size and the β-coe�cients

2. Variable importance:
Quantity of the di�erent metrics

I The competitors:

1. Variable selection:
Elastic Net, Lasso and Ordinary Least Squares

2. Variable importance:
Squared βstd's, Pratt's measure and the lmg-measure

I Set-up 1: Empirical CAR-score; Set-up 2: Shrinkage CAR-score

I The CAR-scores are used for variable selection,

then the linear model is re�tted
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Mean model error with (SE) and median model size

CAR Elastic Net Lasso OLS

Set-up 1:

n = 50 119 (7) 130 (6) 148 (6) 230 (9)

3 5 5 8

n = 100 55 (3) 58 (2) 59 (3) 99 (3)

3 5 5 8

Set-up 2:

n = 10 1482 (44) 1501 (45) 1905 (75) �

10 13 6 �

n = 20 838 (30) 950 (26) 1041 (29) �

9 10 6 �

n = 50 358 (11) 571 (10) 608 (8) 5032 (214)

10 7 5 40
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Simulation
Analysis of benchmark data

Set-up 1: Boxplots of the estimated variable importance
beta=c(3,1.5,0,0,2,0,0,0)
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Simulation
Analysis of benchmark data

Set-up 2: Boxplots of the �rst 15 estimated β-values
beta=c(3,3,3,3,3,-2,-2,-2,-2,-2, 0,0,...)
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Simulation
Analysis of benchmark data

�Gene regulation and DNA damage in the ageing human brain�

from Lu et al. in Nature (2004)

I The data is available on the Gene Expression Omnibus

(�GSE1572�)

I n = 30 and p = 12 625

I Y : Age of the individual (26-106 years)

I X : Gene expression of postmortem brain tissue (frontal cortex)

(Platform: A�ymetrix Human Genome U95 Version 2 Array)

I A prescreening is performed using the empirical marginal

correlations and FNDR control: Remaining size p = 403

I Model size of the competing procedures:
I Lasso: 36 genes
I Elastic Net: 85 genes
I CAR-score: 50− 60 genes

I All procedures include di�erent variables.

Verena Zuber High-dimensional feature selection 22/27



I. The Linear Model
II. The CAR-score

III. Results
IV. Conclusion

Simulation
Analysis of benchmark data

Ageing: The cross-validated prediction error
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Model Size Mean Prediction error (SE)

Lasso 36 0.4006 (0.0011)

CAR 36 0.3357 (0.0070)

Elastic Net 85 0.3417 (0.0068)

CAR 85 0.2960 (0.0059)
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IV. Conclusion
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Summary

1. We introduce a remarkable simple way of quantifying variable

importance and selecting variables in the linear model:

The CAR-score

2. The CAR-score is embedded elegantly in the
theoretical framework of the linear model:

I The CAR-score quanti�es the in�uence of a
decorrelated variable on the best linear predictor.

I It leads to a coherent decomposition of
the proportion of variance explained.

3. Simulations show that the CAR-score achieves a

lower model error than Lasso and Elastic Net

and identi�es the correct model size.

4. In the analysis of real data the CAR-score achieves a

lower prediction error than competing procedures.
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The preprint of Zuber and Strimmer (2010):

�Variable importance and model selection by decorrelation�

is available on:

I http://arxiv.org/abs/1007.5516

I http://www.uni-leipzig.de/~zuber/

care(CAR-Estimation)-package available from CRAN:

I cran.r-project.org/web/packages/care/index.html

Thank You Very Much
For Your Attention!
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