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Today's topics

» variable selection bias
traditional algorithms for trees and forests artificially
prefer variables of certain types

» variable importance
different types of importance measures and concepts

» outlook: learning about algorithms
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numeric variables, variables with many missing values and
variables with many categories are preferred

(due to multiple testing and biased entropy estimation
— Gini index, Strobl et al., 2007)
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the number of categories can be - but is not necessarily -
an indicator of the relevance of a predictor variable

> example 1:

» discretize the continuous variable age - would you prefer
2 categories or 10 categories?

» if age is informative, more information in retained in
10 categories
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Variable selection bias

> example 2:

» consider age in 10 categories vs. gender in 2 categories
which one is more relevant?

» we don’t know yet — but it is not necessarily the one with
more categories!

for trees and forests: need variable selection criteria that are not
biased towards certain types of variables



Variable selection bias

biased variable selection criteria for trees

» Gini index as in CART (~ rpart)
(Breiman et al., 1984)

» information gain as in C4.5
(Quinlan, 1986)

unbiased variable selection criteria for trees

» ANOVA F-test and y?-tests as in QUEST
(Loh and Shih, 1997)

» maximally selected statistics

(Miller and Siegmund, 1982; Lausen et al., 1994; Shih, 2004; Strobl
et al., 2007)

» unbiased entropy estimators
(Strobl, 2005)

» conditional inference tests (— ctree)
(Hothorn et al., 2006)
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(un)biased variable selection
and variable importance
in classification trees
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Variable selection and variable importance
bias in random forests

» Gini importance (randomForest)
mean Gini gain produced by X; over all trees

— biased in favor numeric variables and variables with
many categories

» permutation importance (randomForest, cforest)
mean decrease in classification accuracy after
permuting X; over all trees

+ unbiased only if

1. unbiased variable selection criteria and
2. subsampling without replacement

are used, as is default in cforest (Strobl et al., 2007)

» same for variable selection frequencies



Variable selection frequencies

randomForest (biased trees, replace = TRUE)
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Variable selection frequencies

cforest (unbiased trees, replace = TRUE)
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Variable selection frequencies

cforest (unbiased trees, replace = FALSE)
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variable selection in trees and forests is “marginal”
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Why is that a problem?
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» shoe size is highly correlated with reading skills



Variable importance concepts

example:

in samples of school-children

» shoe size is highly correlated with reading skills

> unless you control for age...



Variable importance concepts

» marginal correlations

» partial correlations, standardized betas
conditional effects of X; given all other variables
in the model

» “averaging over orderings”

» for linear models (relaimpo, Grémping, 2006)
LMG Lindeman, Merenda, and Gold (1980),
~ “dominance analysis" Azen and Budescu (2003)

R? decomposition

» random forest permutation importance
~ "“averaging over trees”



Desirable (?7) properties

> proper decomposition: scores sum up to model R?
» non-negativity

» exclusion: 3; = 0 = score =0

> inclusion: 3; # 0 = score # 0

Gromping (2007)
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Desirable (?7) properties

» proper decomposition: scores sum up to model R?
LMG
> non-negativity
LMG, RF varimp (on average)
» exclusion: 3; = 0 = score = 0
partial correlations, standardized betas,
RF varimp?

» inclusion: 3; # 0 = score # 0
all

Gromping (2007)



Simulation study

dgp: yi =01 - X1+ 4+ B2 Xi12 + €, € s N(0,1)
X1, ..., X12 ~ N(0,X)
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Linear model
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RF permutation importance

RF variable importance
mtry = 2
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RF permutation importance

obs | Y X Z
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Suggestion: conditional permutation importance
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Example: conditional permutation importance

spurious correlation between shoe size and reading skills in
school-children

> mycf <- cforest(score ~ ., data = readingSkills,
+ control = cforest_unbiased(mtry = 2))

> varimp (mycf)
nativeSpeaker age shoeSize
12.62926 74.89542 20.01108

> varimp(mycf, conditional = TRUE)
nativeSpeaker age shoeSize
11.808192 46.995336 2.092454



RF conditional permutation importance

RF conditional variable importance
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RF unconditional permutation importance
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Permutation importance
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Peptide-binding data
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Conclusion

» variable selection bias:

» affects traditional algorithms for trees and forests
» use unbiased criteria and subsampling without replacement to
avoid bias (as in cforest)

» variable importance:

» conditional permutation importance is computationally
expensive and by no means perfect, but more closely resembles
partial correlations — if that is what you want

» advantages of random forest variable importance:

» applicable in high-dimensional settings
» detect nonlinear and interaction effects



Outlook: use trees to learn about algorithms
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Bootstrap bias

p value

distribution of the p-values of a x?-test before and after
bootstrapping (1000 iterations with n = 10 000)

before bootstrapping after bootstrapping
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Bootstrap bias

» bootstrap sampling with replacement artificially induces an
association

» the effect is more pronounced for contingency tables with
many df

= in random forests: variables with many categories are
again preferred



Bootstrap bias

» for bootstrap testing

» compute statistic from original sample
» bootstrap distribution from sample adjusted for the
null hypothesis



Bootstrap bias

» for bootstrap testing

» compute statistic from original sample
» bootstrap distribution from sample adjusted for the
null hypothesis

» here

» compute statistic from unadjusted bootstrap sample
» deviation from the null hypothesis increases with df
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