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Introduction

• Many types of biological networks exist. 

• Networks are a first approach to a systems view of molecular processes within a
cell.

• Few such networks are known in anything approaching their complete structure. 

• Methods using high-throughput data for inference of regulatory networks rely on
searching for patterns of partial correlation or conditional probabilities.

• Algorithms are designed to infer the topology of any network where the change in
state of one node can affect the state of other nodes.

• Transcriptional regulatory networks, signal transduction networks, metabolite
networks.

• Protein-protein interaction networks are also under very active study.
Reconstruction of these networks does not use correlation-based inference.
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Transcriptional regulatory networks

• Genes are the nodes. 

• A gene serves as the source of a direct regulatory edge to a target gene by
producing an RNA or protein molecule that functions as a transcriptional activator
or inhibitor of the target gene. 

• Computational algorithms used to infer the topology take as primary input the 
data from a set of microarray runs measuring the mRNA expression levels of the
genes under consideration for inclusion in the network.

• in general, the results of the inference procedures are undirected graphs. 

• Maathuis, Kalisch & Bühlmann propose a strategy to predict causal effects in
large-scale systems from observational data 
(2009, Annals of Statistics 37, 3133-3164) 
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Estimation of graph topology

• Schäfer J, Strimmer K (2005)  A shrinkage approach to large-scale covariance
estimation and implications for functional genomics. SAGMB. 4: 32

• Meinshausen N, Bühlmann P (2006) High dimensional graphs and variable 
selection with the lasso. Annals of Statistics, 34, 1436-1462

• Kalisch M, Bühlmann P (2007) Estimating high dimensional directed acyclic 
graphs with the PC-Algorithm. Journal of Machine Learning Research, 8: 613-636

• Banerjee O, El Ghaoui L, d’Aspremont A (2008) Model selection through sparse 
maximum likelihood estimation for multivariate Gaussian or binary data. Journal
of Machine Learning Theory, 9: 485-516.

• Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation
with the graphical lasso. Biostatistics. 9: 432-441 
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Validation by simulation

• Simulate data from a directed acyclic graph (DAG), compare the estimated
topology with the topology of the moralized DAG.

• Create random networks: 

The Erdös–Rényi (ER) model of a random network14 starts with N nodes and
connects each pair of nodes with probability p, which creates a graph with
approximately p·N·(N–1)/2 randomly placed links. The node degrees follow a
Poisson distribution.

Scale-free networks are characterized by a power-law degree distribution; the
probability that a node has k links follows P(k) ~ k –γ, where γ is the degree
exponent.

How to find a distribution 
which fits a pre-specified 
topology?
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Validation by simulation

Sensitivity percentage of edges in the original graph which are also present in the  
inferred graph

Specificity percentage of missing edges in the original graph which are also not present in
the inferred graph

PPV percentage of edges in the inferred graph which are also present in the  
original graph

NPV percentage of missing edges in the inferred graph which are also not present in
the original graph

SHD Structural Hamming distance between the inferred and the original graph:
number of edges which have to be changed to transform one graph into the
other
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Validation with observed data
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Validation with observed data
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Validation with observed data
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Validation with observed data

Percentage of edges of the graph calculated for a smaller subsample in the graph 
calculated from the full size. 
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What does microarray data quantify?

• Cumulative  value of observed gene expression in a large ensemble of cells:
cross-sectional observation.  

• Time average of a dynamic process – assuming some ergodicity arguments

• Observed steady-state of a dynamic process: heuristic argument for  
reproducible observations
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Averaged dynamics

The (high-dimensional) multivariate process (Xt)tε[0,T] describes the dynamic of all 
entities (gene expression, protein concentration, …) within the cell over a time 
period of length T.

If a large amount of cells is assayed, we can assume that all possible time states 
which can be taken by the dynamic of the process are observed within the 
ensemble. 

Under mild assumptions, the average of all measurements over the cells is 
identical to the average over time of (Xt)tε[0,T]

∫=
T

0
t dtX

T
1W
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Averaged dynamics

Given that W is observed in the tissue of several individuals, it is possible to 
estimate the conditional correlation structure of W by a graphical model and to 
come up with a conditional correlation graph. 

What does W represent?

∫=
T

0
t dtX

T
1W
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F(t) is the deterministic process which describes the dynamics of all cell constituent 
parts.

The stationary mean zero spatio-temporal process εt quantifies the noise and has 
cross-covariance Ψs-t.

The noise may be heterogeneous over the cell and homogeneous within local 
structures. In different regions, noise may also depend on different time scales.

Both introduces a complex spatio-temporal covariance structure for ε.

This structure influences the measurement of the complex biological signals. The 
covariance of  W is defined by the complex spatio-temporal dependency structure 
of the noise process and not by dependencies in the underlying biological process.  

Internal structure of noise

∫=
T

0
t dtX

T
1Wtt )t(FX ε+= 0][E t =ε tsst ][E −Ψ=ε⊗ε

dsdt][E
T
1)W(Cov

T

0
st2 ∫ ε⊗ε=
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Driven by transcription factors

Z
ttt

Y
ttt

X
tt

YbZ
XaY

)t(fX

ε+⋅=
ε+⋅=

ε+=

Δ−

δ−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ε+ε⋅+ε⋅⋅
ε+ε⋅

ε
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Δ−δ−⋅⋅
δ−⋅=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Δ−Δ−δ−

δ−
Z
t

Y
t

X
t

Y
t

X
t

X
t

t

t

t

bab
a

)t(fba
)t(fa

)t(f

Z
Y
X

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++⋅+⋅⋅
+⋅+

⋅
=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=Σ
1)b1(a)b1(aba

)b1(aa1a
baa1

W
W
W

Cov
222

22

Z

Y

X

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−+−

−+
=Σ−

1b0
bb1a

0aa1
2

2

1

X

Y

Z

Assumption: Δ and δ << T and ε is white independent noise

The result is less simple if the 
noise process has an 
autoregressive structure.
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Scale-free networks

Albert-László Barabás & Zoltán N. Oltvai (2004) Network Biology: Understanding 
the cell’s functional organization, Nature reviews Genetic, 5:101-114

Examples of scale-free organization include genetic regulatory networks, in which 
the nodes are individual genes and the links are derived from the expression 
correlations that are based on microarray data.

The distribution that captures how many different genes a transcription factor 
interacts with follows a power law, which is a signature of a scale-free 
network. This indicates that most transcription factors regulate only a few 
genes, but a few general transcription factors interact with many genes.
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Scale-free networks

The hubs, highlighted in red, are the nodes with 
degrees higher than the 80%-quantile, following 
the Pareto principle.

p = 50
N = 500
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Confounding neighbors

W = (U,V) U observed components
V unobserved components

Q = Cov(W)-1
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Consider a transcription factor that regulates the expression of a gene G1 and 
belongs to the unobserved components V. The concentration of a transcription 
factor may be regulated by some other protein which is also an unobserved 
component in V. This protein is regulated by the transcriptional products of gene 
G2. The conditional correlation structure of both proteins is an element of QVV
while the interaction of the transcription factor with G1 and the protein regulation 
by gene G2 are represented by elements of QUV. This may imply a non-zero 
element in QUU

marg without the need for direct interaction of G1 and G2 within the 
pathway.
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Confounding neighbors

extended analysis

restricted analysis
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Contrasting Graphs: Differential interaction structure
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Confounding neighbors

Differential interaction structure 
for the wnt pathway when genes 
from cell-cycle are incorporated 
into the inference

Graph 1: Interaction estimate for IG-translocated samples
Graph 2: Interaction estimate for samples with normal karyotype

Differential interaction structure 
for the wnt pathway
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Confounding neighbors

Differential interaction structure 
for the wnt pathway when genes 
from cell-cycle are incorporated 
into the inference

Graph 1: Interaction estimate for IG-translocated samples
Graph 2: Interaction estimate for samples with normal karyotype

Differential interaction structure 
for the wnt pathway
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Comparing graphs: the topology oriented approach

Calculate SHD as 
a measure for
difference: S

Permutation or
parametric

bootstrap based
on the combined

sample

For each of the K 
samples, calculate

SHD as a 
measure for

difference: Sn

p value from
resampling

The direct approach uses an algorithm to estimate graphs. 
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Comparing graphs: DDIS
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Comparing graphs: DDIS

• Describe the interaction of node i with the remaining nodes by the lasso
path plot for the regression of all remaining nodes on node i. 

• This avoids to make a specific choice for the penalty parameter.

• Define for two path plots created from the Lasso regression for node i under both
data sets the function

Φi(λ1,λ2) = (# of common nonzero regression coefficients of equal sign by penalties λ1, λ2)

• Look for node i at

• Define for the entire set of nodes

• Define for a subset S of nodes 

∫∫
∞

λλλλΦ=Ψ
2[,0[

2121ii dd),(

∑Ψ=Ψ
nodes

node

∑
∈
Ψ=Ψ
Snode
nodeS
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MYC and its translocation

The data is taken from

Hummel M, Bentink S, Berger H, Klapper W, Wessendorf S, Barth TF et al. 
(2006) A biologic definition of Burkitt’s lymphoma from transcriptional and
genomic profiling. N Engl J Med 354: 2419–2430.

and consists of samples from 199 patients: 

140 patients with normal karyotype, 59 patients with MYC-IG translocation. 

Affymetrix HGU133A raw data were normalised and statistical calculations were 
done using Bioconductor and R software.
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MYC and its translocation

The MYC gene produces a transcription factor c-Myc that controls cellular 
proliferation, programmed cell death and differentiation. It is a part of several 
important pathways and is therefore well suited to study the effect of confounding 
when inferring pathway specific networks. 

Furthermore, the MYC gene can be translocated and placed at other loci in the 
DNA. One important translocation involves the immunoglobulin heavy chain gene 
locus (IGH) on chromosome 14.  

When placed in a region of vigorous gene transcription like the IGH locus, it is 
overexpressed and causes uncontrolled cell proliferation. 

Thus, the transcription factor c-Myc has impact on cell cycle dynamics which is of 
interest for its effects on the steady state data given by the microarrays.
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MYC and its translocation: effect on CC

Overexpression of c-Myc largely influences the cell cycle, for example by 
stimulating or antagonizing the activity of different genes. 

Overexpression of c-Myc in growing cells causes reduced growth requirements 
and shortens the G1 phase, while its underexpression leads to a lengthening of 
the cell cycle. 

Study the cell-cycle pathway between patients with IG-translocated and therefore 
overexpressed c-Myc, and patients with normal karyotype. 

Naiv hypothesis: Since the overexpression of c-Myc only stimulates the cell 
cycle but doesn’t disrupt it, we expect its genes to be overexpressed in MYC 
translocated cells, but less disturbed in their interactions.
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MYC and its translocation: effect on CC

MYCCCND2
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MYC and its translocation: effect on CC

Graph 1: Interaction estimate for IG-translocated samples
Graph 2: Interaction estimate for samples with normal karyotype
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MYC and its translocation: effect on CC

SHD based comparison: The resulting permutation p-value is 0.009 which we rate 
as evidence in a global test for differential interaction. The graph does not contain 
the MYC gene.

DDIS based comparison: No strong evidence for differential interaction between 
MYC-IG and normal samples

There are 14 nodes (probesets) with a p-value below 0.05 (representing 14 genes; 
CCNA2, CCND2,  CDC2, CDC25A,  CDKN1C,  PCNA,  SKP1,  SKP2,  TGFB2,  
MAD1L1,  BUB3, ANAPC10, GADD45G, ANAPC13). Adjustment for multiple 
testing does not result in any significant node. 

Only one of these genes is contained in the set of strongly down regulated (in MYC-
IG) genes (CCND2) and five are contained in the set of strongly up regulated (in
MYC-IG) genes (CCNA2, CDC2, CDC25A, SKP2, MAD1L1). 

All genes detected on the unadjusted level by the DDIS method are also present in 
the graph comparison given in the figure as hubs.
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MYC and its translocation: effect on CC

Graph 1: Interaction estimate for IG-translocated samples
Graph 2: Interaction estimate for samples with normal karyotype

CCNA2 CDC2

MADL1SKP2

CCND2

CDC25A

down regulated in 
MYC-IG
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MYC and its translocation: effect on CC
The protein encoded by this gene also belongs to the 
highly conserved cyclin family. Different cyclins
exhibit distinct expression and degradation patterns 
which contribute to the temporal coordination of each 
mitotic event. This cyclin binds and activates CDC2 
and thus promotes both cell cycle G1/S and G2/M 
transitions.

Cell-cycleCCNA2

CCNA2 CDC2
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Scoring the coherence between inferred network 
and biological knowledge

The protein encoded by this gene also belongs to the 
highly conserved cyclin family. Different cyclins
exhibit distinct expression and degradation patterns 
which contribute to the temporal coordination of each 
mitotic event. This cyclin binds and activates CDC2 
and thus promotes both cell cycle G1/S and G2/M 
transitions.

Cell-cycleCCNA2

CCNA2 CDC2
normal
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MYC and its translocation: Interaction with IGH 

The interaction of IGH gene and the MYC gene in cells with and without 
translocation: 

In cells with translocation MYC and IGH share parts of the same promoter. 

IGH is constantly activated by its promoter in normal cells. 

This causes MYC overexpression in translocated cells which react by 
downregulating MYC. 

Since the MYC promoter is part of the IGH promoter, the reaction causes 
underexpression of IGH. 
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MYC and its translocation: Interaction with IGH 

restricted inference extended inference

Red edges: Direct interaction present for the translocated as well as the normal samples.

Green edges: Direct interaction present only for the translocated samples.

Purple edges: Direct interaction present only for the normal samples.
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MYC and its translocation: Interaction with IGH 
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MYC and its translocation: Dynamics 
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MYC and its translocation: Dynamics 

Some inference on the dynamics of MIC-IGH interaction can be made based on 
specific models.

Unfortunately

1. the literature does not offer detailed analyses on this process, no contribution
form systems biology.

2. The model works in the restricted setting (looking exclusively on the small 
subsystem). As shown before, this approach may suffer from confounding.
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Discussion

Biological 

sample

High-throughput
data

steady state

Inferred network

dynamic model of 
biological issue

knowledge based 
model of biological 

issue

quantify the 
correspondence 

of the steady 
state measure of 

the dynamic 
process with 

observed data

quantify the 
correspondence 
of the available 
knowledge with 
the result of the 

network 
inferrence
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Discussion

• Inferred interaction networks from micorarray gene expression data may not
present easily trustworthy biological facts;

• Strategies to validate the biological relevance of these networks are not
established yet and even basic strategies are lacking;

• Validation may be approached in two ways: based on formal knowledge derived
from the literature or more quantitatively by formal dynamic processes for gene
activity in a pathway of interest.

• Biological validation requires closer links of the genomic statistician with
bioinformatics and molecular systems biology of the cell.
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Discussion

• Notably, methods properly designed to effectively handle the network complexity,
dimensionality and heterogeneity, and then deliver interpretable results are still
needed.

• Especially biological networks call for further investigation as they are known to
suffer from incompleteness and inaccuracy reflected in the high ratios of false
positives and false negatives. 

• The limitations are in part due to the knowledge of the organisms and in part to
the presence of substantial noise floor at both the experimental and the
computational (predicted measurements) level.


