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Prologue

Normalized sums are ubiquitous in statistics
(binomial models, location parameter tests, U-statistics, etc.)

Central Limit Theorem (plus Slutsky’s theorem):

(ζn : n ∈ N) iid sequence, Var[ζ1] <∞, ζ =
∑n

i=1 ζi/n, then

L
(√

n
ζ − E[ζ1]

s

)
→

(n→∞)
N (0, 1), s =

(
1

n− 1

n∑
i=1

(ζi − ζ)2

)1/2

.

We call
√

n(ζ − E[ζ1])/s t-statistic of (ζj)j=1,...,n.

Berry-Esséen:

E[|ζ1|3] finite, then rate of convergence is at least O(1/
√

n).
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Questions in practice

1. Can convergence behavior be characterized more sharply?
2. What roles do higher moments play?
3. Are there means of speeding convergence up?
4. ”How valid” is statistical inference based on the CLT?

Answers (at the end of this talk):

1. YES!
2. A crucial role.
3. YES!
4. It depends.
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Edgeworth expansion for standardized sums

Let (ζn : n ∈ N) iid sequence, E[ζ1] = 0 and Var[ζ1] = 1.

Sn =
√

n
ζ

s
with ζ =

n∑
i=1

ζi/n and s =

(
1
n

n∑
i=1

(ζi − ζ)2

)1/2

.

Modern notation of an (Edgeworth) expansion for the cdf of Sn:

Fn(x) = Φ(x) + ϕ(x)

r∑
i=1

n−i/2qi(x) + o(n−r/2), (1)

with Φ cdf and ϕ pdf of N (0, 1). Each qi is a polynomial of order
3i− 1 with coefficients depending on αj = Eζ j

1, j = 3, . . . , i + 2.

Validity (cf. [5]): E|ζ1|r+2 <∞ and Cramér’s condition holds.
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The polynomials q1 and q2

The first two polynomials q1, q2 are computed for example in
[5], [6] and can be found in various textbooks. They are given by

q1(y) =

(
1
6

+
1
3

y2
)
α3,

q2(y) =

(
1
12

y3 − 1
4

y
)
α4 +

(
1
6

y− 1
18

y5 − 1
9

y3
)
α3

2 − 1
2

y3.

This representation shows that the rate of convergence is
O(n−1/2) in case of α3 6= 0 and O(n−1) in case of α3 = 0.

Obviously, the best possible rate of convergence is O(n−1) and
this may be the reason that usually only the first two
polynomials are reported.
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Impact of normalization

Lehmann and Romano (2005), Section 11.4.2:

Edgeworth expansion for the classical t-statistic with
normalization (n− 1)−1 in the definition of s.

Approximation polynomials in this case differ from the qi’s in (1).

Hence, the norming sequence in the denominator of a
self-normalized sum is of importance for its asymptotic
behavior.

⇒ Question: Exist other norming sequences for specific values
of the moments αi, i ≥ 3, such that the rate of
convergence can be improved?
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An early approach: Kai-Lai Chung (1946), cf. [2]

Back in 1946, Kai-Lai Chung derived an expansion for Fn.

Unfortunately, the explicit expansion given in equation (35) in
[2] is incorrect as noted earlier by Wallace in [9] and to our
knowledge there seems to be no published correction.

We corrected the main inaccuracy in [2] and extended the
formulas where necessary.

⇒ Chung’s method elementary, straightforward and efficient!

In principle, the qi’s are computable up to arbitrary order with an
algebraic computer package.
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Correction of Chung’s error
In the derivations in [2], the function g defined by

g(λ) = z(1 + λ2z2)−1/2

1 +

∞∑
j=1

Γ(3/2)

Γ(3/2− j)Γ(j + 1)
(α4 − 1)j/2(λx)j


and its derivatives g(i) play a crucial role.

The formulas given in [2], p. 458, struggle by abbreviating
z′ = z(1 + λ2z2)−1/2 and ignoring that z′ depends on λ.

Correct derivatives in λ = 0 are given by

g(1)(0) =
1
2

z(α4 − 1)1/2x, g(2)(0) = −z3 − 1
4

z(α4 − 1)x2,

g(3)(0) = −3
2

z3(α4 − 1)1/2x +
3
8

z(α4 − 1)3/2x3,

g(4)(0) = 9z5 +
3
2

z3(α4 − 1)x2 − 15
16

z(α4 − 1)2x4.
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Chung’s approximation technique

Formally, Fn(z) is approximated in [2] by∫ ∞
−∞

∫ g(λ)

−∞
w(x, y) dy dx +

∫ ∞
−∞

∫ g(λ)

−∞
γ(x, y) dy dx,

with w(x, y) = 1
2π(1−ρ2)1/2 exp

(
− x2−2ρxy+y2

2(1−ρ2)

)
, ρ = α3(α4 − 1)−1/2.

For the definition of γ(x, y), we need some more notation:

wpq(x, y) =
∂p+q

∂xp∂yq w(x, y), Ir
pq(z) =

∫ ∞
−∞

xrwpq(x, z) dx,

fpq(λ) =

∫ ∞
−∞

∫ g(λ)

−∞
wpq(x, y) dy dx, h(ζ) = t1

ζ2 − 1
(α4 − 1)1/2 + t2ζ,

where ζ has the same distribution as ζ1.
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Derivation of γ(x, y)
Let Uj(t1, t2) denote the jth cumulant of h(ζ) and define

mk(t1, t2) =

k−3∑
`=0

−i`+1U`+3(t1, t2)

(`+ 3)!
λ`+1,

Ψk(it1, it2) =

k−3∑
j=1

mj(t1, t2)j

j!
.

Expanding the Ui’s in terms of t1, t2 and replacing (it1)p(it2)q by
(−1)p+qwpq(x, y) in Ψk(it1, it2) yields the representation

Ψk(it1, it2) ≡
k−3∑
j=1

γj(x, y) = γ(x, y),

where γj(x, y) = O(λj) and wpq(x, y) appears repeatedly in
γj(x, y) for various p, q with p + q ≤ 3r.
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Taylor expansion for fpq(λ)

We can write

Fn(z) =

r∑
j=0

f (j)00 (0)

j!
+

r∑
j=1

∫ ∞
−∞

∫ g(λ)

−∞
γj(x, y) dy dx + o(λr).

Now, fpq(λ) is approximated by the Taylor series in λ = 0
wherever it appears in

∫∞
−∞

∫ g(λ)
−∞ γj(x, y) dy dx. More precisely,

fpq(λ) is replaced by

r∑
j=0

f (j)pq (0)

j!
λj + o(λr).

This means, all we need to carry out Chung’s method are
tractable formulas for f (j)pq (0) !
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Lemma:
For q ≥ 0, non-vanishing Ipq’s are given by the following recursion.

I0
0q(z) = ϕ(q)(z),

I1
0q(z) = −ρϕ(q+1)(z),

Ir+1
0q (z) = −ρIr

0,q+1(z) + rIr−1
0q (z), r ≥ 1, (2)

Ir
pq(z) = −rIr−1

p−1,q(z), 1 ≤ p ≤ r.

Remark:
Modified Hermite polynomials: hn(x) = −(I/

√
2)nHn(Ix/

√
2).

Interestingly, Ir
0q = hr(ρD)(ϕ(q)), where D denotes the differential

operator. Note that (2) corresponds to hr+1(x) = −xhr(x) + rhr−1(x).
(X,Z) bivariate normal, means 0, variances 1 and covariance ρ:

Ir
0q(z) =

∂q

∂zqE[Xr|Z = z].
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Lemma: (Computation of f (j)pq (0))
Setting Ir

pq ≡ Ir
pq(z) for r = 0, . . . , 3, we have for p, q ≥ 0

f00(0) = Φ(z),

fpq(0) =

{
−I0

p,q−1, q ≥ 1,
0, q = 0,

f (1)pq (0) =
1
2

z(α4 − 1)1/2I1
pq,

f (2)pq (0) =
1
4

(α4 − 1)
(
−zI2

pq + z2I2
pq+1

)
− z3I0

pq,

f (3)pq (0) = −3
2

(α4 − 1)1/2 (z3I1
pq + z4I1

p,q+1
)

+
1
8

(α4 − 1)3/2 (3zI3
pq − 3z2I3

p,q+1 + z3I3
p,q+2

)
.
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Computational remarks

Now all ingredients for the computation of the polynomials qi

are collected.

Computation by hand remains cumbersome. Therefore we
prepared a Maple worksheet which allows the computation of
the qi’s up to arbitrary order.

Due to the structure of the f (j)pq ’s, the lemma can be extended by
utilizing standard symbolic integration methods.

Clearly, resources limit the number of computable qi’s.

Remark:
We also computed the qi’s with Hall’s ’smooth function’ method
described in [6] up to order 6 with complete coincidence. Hall’s
method involves the computation of moments of more complicated
statistics and seems more time consuming.
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Rates of convergence
Recall that q1(y) ≡ 0 for α3 = 0.
Interpretation: Vanishing skewness of ζ1 ⇒ On the n−1/2 scale,
the approximation of Fn cannot be distinguished from Φ.
However, the rate of convergence of Fn towards Φ can at most
be O(n−1), because q2 never vanishes.
Our approach to improve this rate of convergence:

Tn =

√
nζ̄√

an
∑n

i=1(ζi − ζ̄)2
, where an =

1

n(1−
∑M

j=1 Cjn−j/2)

Formal expansion for the generalized self-normalized sum Tn:

FTn(t) = Φ(t) +

r∑
i=1

n−i/2q̃i(t)ϕ(t) + o(n−r/2) (3)

Coefficients of the q̃i’s depend on cumulants of ζ1 and on Cj’s.
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Derivation of the approximation for Tn
Notice that Tn = Sn/bn with bn =

√
nan. Therefore,

FTn(t) = P(Tn ≤ t) = P(Sn ≤ bnt) = Fn(bnt).

From (1), we get under the necessary moment condition that

FTn(t) = Φ(bnt) +

r∑
i=1

n−i/2qi(bnt)ϕ(bnt) + o(n−r/2).

In terms of Φ(t) and ϕ(t), we can write

FTn(t) = Φ(t) + ϕ(t)

[
hn(t) +

r∑
i=1

n−i/2qi(bnt)gn(t)

]
,

where the auxiliary functions hn and gn are defined by

hn(t) =

[
Φ(bnt)
Φ(t)

− 1
]

Φ(t)
ϕ(t)

, gn(t) = ϕ(bnt)/ϕ(t).

⇒ Expansions for bn, hn(t), gn(t) needed!
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Lemma:
Setting λ = n−1/2, asymptotic expansions of bn, hn(t) and gn(t) are
given by

bn = 1 +
C1

2
λ+

C2 + 3C1
2/4

2
λ2 + O

(
λ3) ,

hn(t) =
C1t
2
λ+

t
8
(
4 C2 + 3 C1

2 − C1
2t2)λ2 + O

(
λ3) ,

gn(t) = 1− C1t2

2
λ− t2

2

(
C1

2 + C2 −
C1

2t2

4

)
λ2 + O

(
λ3) .

Proof:
The expansions for bn and gn(t) are simple applications of the Taylor
series of the square root and the exponential functions. For the expan-
sion of hn(t), well-known asymptotic expansions for Mills’ ratio are
needed additionally.
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Resulting approximation polynomials

Having expanded bn, hn(t), and gn(t) in this manner, we finally
obtain the first two q̃i’s as

q̃1(t) =
α3 t2

3
+
α3

6
+

C1t
2
,

q̃2(t) =
3tC1

2

8
+
α4t3

12
+
α3

2t
6
− t3C1

2

8
− α3

2t3

9
− α3

2t5

18

+
α3 C1t2

4
+

tC2

2
− t3

2
− α3C1t4

6
− α4t

4
.
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Sanity check
Setting M = 2, C1 = 0 and C2 = 1, we get the Studentized sum

S̃n =

√
nζ̄√

1
n−1

∑n
i=1(ζi − ζ̄)2

with corresponding approximation polynomials

q̃1(t) =
α3 t2

3
+
α3

6
=
α3

6
(
2t2 + 1

)
,

q̃2(t) =
α4t3

12
+
α3

2t
6
− α3

2t3

9
− α3

2t5

18
+

t
2
− t3

2
− α4t

4

= t
[
κ

12
(
t2 − 3

)
−
α2

3
18
(
t4 + 2t3 − 3

)
− 1

4
(
t2 + 1

)]
,

where κ = α4 − 3 denotes the excess kurtosis of ζ1. These are
just the approximation polynomials given in Section 11.4.2 of
the textbook [8] by Lehmann and Romano.
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Rates of convergence for
generalized self-normalized sums

Theorem:
Let ∆n(x) = |FTn(x)− Φ(x)|.

(i) If α3 6= 0 or C1 6= 0, then ∆n(x) = O(n−1/2).

(ii) If α3 = C1 = 0 and (α4 6= 6 or C2 6= 3), then ∆n(x) = O(n−1).

(iii) If α3 = C1 = 0 and α4 = 6 and C2 = 3 and (α5 6= 0 or C3 6= 0),
then ∆n(x) = O(n−3/2).

(iv) If α3 = C1 = 0 and α4 = 6 and C2 = 3 and α5 = C3 = 0, then
∆n(x) = O(n−2).

Proof:
For parts (i)-(iii), we subsequently solve q̃i(t) ≡ 0 for Ci and αi+2 for
i = 1, 2, 3. For the proof of part (iv), we show that it is impossible to
find values for (α6,C4) such that q̃4 becomes the null polynomial.
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Remark:

1. The studentized sum S̃n with Ci = 0 for all i 6= 2 and C2 = 1 can
only achieve a rate of convergence of O(n−1).

2. Justification for the special role of C2 = 3:
Norming an = (n− 3)−1 leads to variance standardization of Tn,
that is, Var[Tn] = 1 if the ζi are iid normal as N (0, 1).

3. The special role of α4 = 6 in parts (ii) - (iv) is not clear to us.

Example:
Let ϕ(x|σ) denote the pdf of N (0, σ2) and the density of ζ1 given by

fζ1(x) = αϕ(x|σ1) + (1− α)ϕ(x|σ2)

with σ2
1 = (2α)−1, σ2

2 = (2(1− α))−1 and α = (2 +
√

2)/4.

Then Eζ1 = Eζ3
1 = Eζ5

1 = 0, Eζ2
1 = 1, Eζ4

1 = 6, and Eζ6
1 = 90.

Setting C1 = C3 = 0 and C2 = 3, part (iv) applies in this case.
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Expansion in terms of Student’s t

Goal here: Derive an Edgeworth-type expansion for Tn of form

FTn(t) = Ftν (t) +

r∑
i=1

n−i/2Qi(t)ϕ(t) + o(n−r/2) (4)

in terms of Student’s t with ν = n− 1 degrees of freedom.

Note: Tn with norming sequence an = (n− 1)−1 and
ζ1 ∼ N (0, 1) is exactly tν-distributed.

Questions:
1. Can an improved rate of convergence be obtained by

changing the approximating distribution from N (0, 1) to tν?
2. Can the norming constants Cj be employed to correct for

higher-order moments of ζ1 ?
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Derivation of the Qi’s in (4)

Denote by q∗i , i = 1, . . . , r, the approximation polynomials for
Tn = tν , i.e., for special choices M = 2, C1 = 0 and C2 = 1 and
αj, j = 3, . . . , (r + 2), equal to the moments of N (0, 1).

By subtracting the resulting expansion from the general
expansion for Tn, we immediately conclude that

Qi(t) = q̃i(t)− q∗i (t), i = 1, . . . , r.

Carrying out these calculations, we obtain the first four q∗i ’s as

q∗1(t) = q∗3(t) ≡ 0,

q∗2(t) = − t
4
(
t2 + 1

)
,

q∗4(t) = − t
96
(
3 t6 − 7 t4 + 19 t2 + 21

)
.
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Consequently, the first two Qi’s are given by

Q1(t) = q̃1(t) =
α3 t2

3
+

C1t
2

+
α3

6
,

Q2(t) = −
α2

3
18

t5 − α3C1

6
t4 −

(
1
4

+
α2

3
9
− α4

12
+

C2
1

8

)
t3 +

α3C1

4
t2

+

(
3C2

1
8

+
C2

2
+
α2

3
6
− α4

4
+

1
4

)
t.

Rates of convergence:

• Q1 only vanishes for α3 = C1 = 0.
• Q2 only vanishes if additionally α4 = 3 and C2 = 1, i. e.,

in case of coincidence with the classical t-distribution case.
• This need for coincidence extends to the conditions for

vanishing Q3 and Q4 (explicit formulas omitted here) .
• Conclusion: t-approximation instead of normal

approximation does not help to increase convergence
rates.
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A link to Gayen’s (1949) method
Substitute ϕ in (4) by the pdf ftν of the tν-distribution:

FTn(t) = Ftν (t) +

r∑
i=1

n−i/2 Q̃i(t) ftν (t) + o(n−r/2). (5)

Closely related expressions for FTn for fixed n have already
been investigated in 1949 by A. K. Gayen based on
M. S. Bartlett’s famous paper [1].

One can derive the first four Q̃i’s in (5) by expanding

ϕ(t) = ftν (t)
[

1 +
1 + 2t2 − t4

4n
+ O(n−2)

]
.

Plugging the latter expansion into (4) leads to

Q̃i ≡ Qi, i = 1, 2,

Q̃i(t) = Qi(t) +
1 + 2t2 − t4

4
Qi−2(t), i = 3, 4.
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Comparison with Gayen’s results

Unfortunately, we could only reproduce Gayen’s (1949) results
up to order n−1.

Taking limits (n→∞) in Gayen’s paper also yields
Q̃i ≡ Qi, i = 1, 2.

However, the expressions of order O(n−3/2) associated with the
factors α3

3 and α3α4 seem to be in error in [4], p. 359, and also
taking limits (n→∞) in these expressions does not coincide
with our results.

Therefore, we also recomputed the original approximation
method by Bartlett (cf. [1]) which underlies Gayen’s (1949)
calculations and finally reproduced ”our” Q̃i’s for i = 1, . . . , 4.
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Asymptotic order of magnitude of |FTn − Ftν |

Utilizing Chung’s method and higher order expansions for
ϕ(t)/ftν (t), we calculated Qi’s and Q̃i’s up to order 8.

α∗k : k − th moment of N (0, 1),∆αk = α∗k − αk

C∗2 = 1,C∗k = 0 for k 6= 2 and ∆Ck = C∗k − Ck

Corollary:
Assume that the (M + 2)-nd moment αM+2 of ζ1 is finite for some
integer 1 ≤ M ≤ 8 and Cramér’s condition holds. Then

|FTn − Ftν | = O(n−k∗/2),

where k∗ = min{k ∈ {1, . . . ,M} : ∆αk+2 6= 0 ∨∆Ck 6= 0}.

If no such k∗ exists, then |FTn − Ftν | = o(n−M/2).
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What happens for M > 8 ?

Since each polynomial Qi or Q̃i, respectively, only depends on
αj, j = 3, . . . , i + 2 and Cj, j = 1, . . . , i, and equations (4), (5) are
valid for Tn = tν , it is clear that also for M > 8 the conditions

∆αi+2 = 0 ∧∆Ci = 0 for all i = 1, . . . ,M (6)

imply Qi(t) ≡ 0 and Q̃i(t) ≡ 0 for all i = 1, . . . ,M.

⇒ Conditions (6) are sufficient for vanishing polynomials
up to the M-th for arbitrary M ∈ N.

We conjecture that conditions (6) are also necessary conditions
for any M ≥ 1 as stated in the Corollary for 1 ≤ M ≤ 8.



Introduction Chung’s method Rates of convergence Expansion in terms of Student’s t Conclusions

Conclusions

• Four different types of Edgeworth expansions for Sn, Tn.
Once polynomials for one are obtained, they can be utilized
to derive the polynomials for the others straightforwardly.

• At http://www.helmut-finner.de, find Maple sheets
for Chung’s, Hall’s, and the Bartlett-Gayen method.

• Practical implications:

• For skewed distributions, no convergence rate improvement
upon O(n−1/2) is possible with our approach.

• If there is any evidence that α4 is near 6, a normal
approximation with C2 = 3 is the best choice leading to
|FTn(x)− Φ(x)| = O(n−3/2).

• t-approximation works best for an = (n− 1)−1 and can
achieve arbitrary rate of convergence for universes which
are close to standard normal in terms of moments. This
makes the t-approximation a more natural choice if we
assume that the universe is ”nearly normal”.

http://www.helmut-finner.de
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