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Modeling of nonlinear effects at the tip zones for a crack onset

The starting point: a crack onset
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Griffith’ energy criterion (1921)

The crack starts to propagate only if energy is released.
Engineering praxis: Lots of various criteria, the simplest:
concept of critical SIF ( Irwin 1957)
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Griffith’ energy criterion (1921)

The crack starts to propagate only if energy is released.
Engineering praxis: Lots of various criteria, the simplest:
concept of critical SIF ( Irwin 1957)
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The starting point: a crack onset

The mathematical frame: a formally self adjoint elliptic boundary value problem

Lu = f in Ω, Nu = g on Σ, Nu = 0 on Λ±

Compatibility condition (R = space of rigid motions)

(f , r)Ω + (g , r)Σ = 0,∀ r ∈ R = {D(∇)r = 0}

L = −D(∇)>AD(∇) second order strongly elliptic operator
N = n · AD(∇) Neumann operator, Nu normal stresses
u: displacement field,

Prop. ∃ solution ue ∈ H1(Ω), minimizer of the energy functional

U(u; f , g ,Ω) : =
1

2
(D(∇)u,AD(∇)u)Ω − (f , u)Ω − (g , u)Σ

= Ee(u)− A(u).

Normalization condition (ue , r)Ω = 0 gives uniqueness.
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Informations about the asymptotic behavior

ue minimizer of U(u; f , g ,Ω) ⇒ ue ∈ H1(Ω), but ue /∈ H2(Ω)
ue ∈ H2

loc(Ω \ {O1,O2})

2

OO
1

representation of ue near the tips Oν :

ue(x) = ue(Oν)+K ν
1 X 1(xν)+K ν

2 X 2(xν)+ũe

K ν
j : stress intensity factors (SIFs)

X j : solutions to the model problem:

LX = 0 in R2 \ Λ0, NX = 0 on Λ0 0

φ
r

Λ

power law solutions: X = rλΦ(φ), Y = r−λΨ(φ), λ = k
2 , k ∈ N

2 for each k, (+ 4 solutions corresponding to λ = 0)

X 1,2 = r1/2Φ1,2(φ)
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Informations about the asymptotic behavior

Estimates for the remainder

near the tips:

u(x) = u(Oν) + K ν
1 X 1(xν) + K ν

2 X 2(xν) + ũ

‖ũ;H2(Ω)‖+
2∑

ν=1

{
|u(Oν)|+

2∑
j=1

|K ν
j |

}
≤ c

(
‖f ; L2(Ω)‖+ ‖g ;H1/2(Σ)‖+ ‖u; L2(Ω)‖

)
.

Remark
It is not enough to play with asymptotics in Kondratiev spaces V l

β

and embeddings here!
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Informations about the asymptotic behavior

The enlarged state space I

Instead of u ∈H2
loc(Ω \ {O1,O2}) ∩ H1(Ω)

require u ∈ D =:H2
loc(Ω \ {O1,O2}) ∩ L2(Ω)

Again asymptotic representation, now with power-law solutions
related to λ = −1

2 , 0, 1
2

λ = 1
2 : X j , λ = −1

2 : Y j , λ = 0: ej , T j (logarithmic) ⇒ near Oν :

u(x) = aν +
2∑

j=1

(
dν
j T j(xν) + cν

j X j(xν) + bν
j Y j(xν)

)
+ ũ(x),

ũ(x) ∈ H2(Ω), ũ(Oν) = 0 + estimate of ũ and coefficient vectors
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Informations about the asymptotic behavior

The enlarged state space and generalized Green’s formula

Various conditions for the coefficient vectors a, b, c , d are possible.
Kick out concentrated forces at the tips: d = 0

E =

u ∈ D : u =
2∑

j ,ν

χν
(
cν
j X j + bν

j Y j
)

+ ũ,Nu = 0 on Λ±

 ,

ũ ∈ H2(Ω), ‖u;E‖2 = |b|2 + |c |2 + ‖ũ;H2‖2

and the Generalized Green’s formula

(Lu, v)Ω + (Nu, v)Σ − (u,Lv)Ω − (u,N v)Σ = 〈cu, bv 〉 − 〈bu, cv 〉

Which linear and nonlinear conditions on b and c lead to well
posed problems with a sensible physical interpretation?
H1(Ω)-solutions: bu = 0 (→ Ee)
(”Generalized Dirichlet condition” at the tips)
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Conditions at the tips

Linear conditions

Hierarchy of conditions:

R := L2(Ω)× H1/2(Σ)× R4.

Lu = f in Ω, Nu = g on Σ

Nu = 0 on Λ, H1b + H2c = h ∈ R4
(∗)

(∗) defines a Fredholm op. of index 0: A : E → R

Independent of H = (H1,H2): rigid motions ⊂ kerA, requires
always

(f , r)Ω + (g , r)Σ = 0.



Modeling of nonlinear effects at the tip zones for a crack onset

Conditions at the tips

Linear conditions

H = (−T ; I), T symmetric (and invertible f.s.),
(∗) has a solution as a stationary point of the
generalized energy functional:

U(u; f , g , h) =
1

2
(Lu, u)Ω +

1

2
(Nu, u)∂Ω︸ ︷︷ ︸− ((f , u)Ω + (g , u)Σ)︸ ︷︷ ︸

elastic energy work of ext. forces

+
1

2
〈Tbu − cu, bu〉︸ ︷︷ ︸ −〈h, bu〉︸ ︷︷ ︸

el. energy stored at the tips work at the tips
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Conditions at the tips

The role of the polarization matrix

E = Ee ⊕ span{ζ j , j = 1, . . . , 4}

ζ j weight functions:
solve (∗) with f = 0, g = 0, b = ej ∈ R4.

Z := (cζ j )j Polarization matrix, symmetric matrix, global integral
characteristic of Ω.

Lemma If T − Z is positive, then (∗) has a solution u, unique
under the normalization (u, r)Ω = 0, and u is the minimizer of the
generalized energy functional.
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Nonlinear conditions at the tips

Lu = f in Ω, Nu = g on Σ, Nu = 0 on Λ,

T(bu)− cu = 0, with T(0) = 0, T = ∇E
(∗∗)

Proposition 2
Z : polarization matrix,
EΩ(b) := E(b)− 1

2〈Zb, b〉 strictly convex and coercive
(∗∗) has a unique solution u ∈ E⊥, u is the minimizer of the
generalized energy functional

U(u) =
1

2
(Lu, u)Ω +

1

2
(Nu, u)Σ − (f , u)Ω − (g , u)Σ

+ E(bu)−
1

2
〈cu, bu〉.
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Nonlinear conditions at the tips

A striking example: The Dugdale criterion, (Leonov, Panasyuk 1959, Dugdale 1960)

Symmetric problem (”Mode I loading”)

small one dimensional plastic
zones at the tips: Find u with
bounded stresses and dν with

Lu = 0 in Ω(d), Nu = g on ∂Ω(d),

with g = 0 on Λ±, g = ∓σce2 on Υν,±

Bounded stresses ⇒ determines the lengthes dν .

The criterion itself: deformation criterion crack propagates if

u+(Oν)− u−(Oν) > δcrit

σc large: the problem possesses a unique solution, dν = O(σ−2
c )
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Nonlinear conditions at the tips

A striking example: The Dugdale criterion, (Nazarov & Sp-N 2009)

Method of matched asymptotic expansions, model uD by the first
terms of the outer decomposition:

uD ∼ u0 + a(K 3
1 ζ1 + K 3

2 ζ2) =: ud ∈ E

ud solves (∗∗) with nonlinear conditions at the tips

cν = (
1

a
bν)1/3 + (Zb)ν
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Nonlinear conditions at the tips

A striking example: The Dugdale criterion, (Nazarov & Sp-N 2009)

Method of matched asymptotic expansions, model uD by the first
terms of the outer decomposition:

uD ∼ u0 + a(K 3
1 ζ1 + K 3

2 ζ2) =: ud ∈ E

ud solves (∗∗) with nonlinear conditions at the tips

cν = (
1

a
bν)1/3 + (Zb)ν = ∇E(b)

ud minimizes the generalized energy functional U with

E(b) =
3

4 3
√

a
(b

4/3
1 + b

4/3
2 ) +

1

2
〈Zb, b〉
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Nonlinear conditions at the tips

A striking example: The Dugdale criterion, (Nazarov & Sp-N 2009)

Crack path is known a priori (only straight propagation).
U → U(h)
Calculation of the energy release rate

d

dh
U|h=0

I involves the geometry of the domain

I The condition d
dhT|h=0 < 0 (T potential energy + surface

energy) coincides with the original Dugdale criterion up to
O(|h|2).
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Nonlinear conditions at the tips

Modeling of plastic zones

S (tσ) = tS (σ) (vM)

Assume:

σ =

{
AD(∇)u for S (σ) ≤ S0,

?? for S (σ) ≥ S0

Examples for S : conditions of von Mises or Tresca
S0 large, solutions to the nonlinear model problem in R2 \ Λ∞

W (K ; x) =
2∑

j=1

(
KjX

j(x) +Mj(K )Y j(x)
)
+O(|x |−1), as |x | → ∞.

(NMP)
M(K ) = (M1(K ),M2(K ))> : R2 → R2

is a certain non-linear mapping.
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Nonlinear conditions at the tips

Modeling of plastic zones

Proposition 3

I For given K ∈ R2, assume the existence of a unique solution
W to the homogeneous nonlinear model problem with

W (x) = K1X
1 + K2X

2 + O(1) as |x | → ∞ ⇒

Mj = |K |3Mj

(
K

|K |

)
I If M−1 = ∇EΩ, EΩ convex ⇒ solution to the nonlinear

problem can be modeled by a minimizer u to the generalized
energy functional, then

U(u, g) = U(u0) + Up(K ),K : SIFs of u0

Modelling of plastic effects: Adding a functional Up(K )
homogeneous of order 4 to the classical potential energy.
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Nonlinear conditions at the tips

Modeling of plastic zones

calculated in the Institute of applied Mechanics, Paderborn

Thank You!
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