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The model

The cracked elastic domains
The propagation of straight cracks by the influence of elastic waves
will be considered as a moving boundary value problem:
Reference config. Q¢ = Q\ oo — Current config. Q; = Q\ o1,
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The model

The cracked elastic domains
The propagation of straight cracks by the influence of elastic waves
will be considered as a moving boundary value problem:
Reference config. Q¢ = Q\ oo — Current config. Q; = Q\ o1,
where the motion of Qg to €2; is given by a family of mappings

y = Fi(x) =x+h(t) (x), xe€Qo, yecQ.
with unknown crack tip motion h(t), 6 = n(r)(1,0)7.
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The model

The system of equations in the current configuration

. T
A+ p)V(V - b)) + pV2i + pf = pie  in Q= |J Q,
t=0

oi=0 on | oy,

onXy:=Tnyx(0,T),
) on ZD = FD X (0, T),
y) = o, 0:d(0,y) =1 in Qp.
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The system of equations in the current configuration

. T
A+ p)V(V - b)) + pV2i + pf = pie  in Q= |J Q,
t=0

-
oci=0 on | oy,
t=0

ofi=pG onXy:=Tyx(0,T),
t,y)=0 onXp:=Ipx(0,T),
O’y) - U?), ata(oa}/) = U_i_ in Qo.
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The model Dynamic crack singularities Dynamic ener

gy release rate The complete coupled problem Numerical results to a

Energy balance law
Assume that for every time t the rate of total energy [1 is given by
the rates of the dissipative energy D, the elastic energy E, the
kinetic energy K and the external energy A for the wave
displacement u, satisfying the above system:

0="TI(t) = D(t) + E(t) — A(t) + K ()
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The model Dynamic crack singularities Dynamic energy

release rate The complete coupled problem Numerical results to a

Energy balance law
Assume that for every time t the rate of total energy [1 is given by
the rates of the dissipative energy D, the elastic energy E, the
kinetic energy K and the external energy A for the wave
displacement u, satisfying the above system:

0="TI(t) = D(t) + E(t) — A(t) + K ()

1d
@ E(t)==— [ o(d): e(d)dy
24t g,
o A(t) = fpf~_'t dy+ [ pq- U ds,
Q¢ Y
° K(t)= [ 3pltel dy = D(t).

@ D = energy, spent for irreversible processes (plastic
deformations, voids, chemical reactions, noise,...)
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The model

Griffith criterion

Dynamic energy release rate in the plane strain case:

by i i
G(h, by = { T if(t) # 0
L (K + k3), if H(t) = 0.
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The model

Griffith criterion
Dynamic energy release rate in the plane strain case:

b(e) i b
G(h, h/) —_ h’(t)’ If h (t) 7& 0
L (K + k3), if H(t) = 0.

Griffith criterion: Let the fracture toughness '(h, h") be known by
experiments.

@ If G(h,h') < T(h,h") = no crack propagation.

@ If G(h,h') =T(h, h") = crack propagation,
additional equation for calculation of the unknown crack
position h(t) for a running crack.
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The model

Challenges of the model

@ Characterize the behaviour of the wave fields near the running
crack tip (i.e. determine the dynamic crack singularities).
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@ Characterize the behaviour of the wave fields near the running
crack tip (i.e. determine the dynamic crack singularities).

@ Calculate the dynamic energy release rate in terms of dynamic
stress intensity factors.
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Griffith criterion for the running crack.
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The model

Challenges of the model

@ Characterize the behaviour of the wave fields near the running
crack tip (i.e. determine the dynamic crack singularities).

@ Calculate the dynamic energy release rate in terms of dynamic
stress intensity factors.

@ Solve the ordinary differential equation for h(t) given by the
Griffith criterion for the running crack.

@ Compute numerically the wave fields and the resulting motion
of the crack tip h(t) by an iterative scheme.

For the out-of-plane case (Mode Ill) see: S.Nicaise/S.
2007(JMAA), L./S./Sewell 2008(IntJFrac)
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Dynamic crack singularities

Helmholtz's decomposition
Following ideas of Lamé (1852), Papkovich (1932) and Neuber
(1986) we decompose the general Navier-Lamé equation system
into separate equations which relate to longitudinal waves and

transversal waves.
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The model Dynamic crack singularities Dynamic energy release rate The complete coupled problem Numerical results to a

Helmholtz's decomposition
Following ideas of Lamé (1852), Papkovich (1932) and Neuber
(1986) we decompose the general Navier-Lamé equation system
into separate equations which relate to longitudinal waves and
transversal waves.

Theorem

Let U be a solution of the Navier-Lamé equation. Then there exists
scalar and vector potentials ¢(dilatational part) and 1 (rotational
part) in the 3D-case such that:

I=Vo+Vx, V-9=0.
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The model Dynamic crack singularities Dynamic energy release rate The complete coupled problem Numerical results to a

Helmholtz's decomposition
Following ideas of Lamé (1852), Papkovich (1932) and Neuber
(1986) we decompose the general Navier-Lamé equation system
into separate equations which relate to longitudinal waves and
transversal waves.

Theorem
Let U be a solution of the Navier-Lamé equation. Then there exists

scalar and vector potentials ¢(dilatational part) and " (rotational
part) in the 3D-case such that:

I=Vo+Vx, V-9=0.

Also there exist a scalar function f and a vector function B, such
that the density vector of the volume forces
f(y,t) =f = (1, f, )" can be decomposed as:

f=Vf+VxB, V-B=0,

Adriana Lalegname, Anna-Margarete Séndig Wave-crack interaction in finite elastic bodies 8/24



Dynamic crack singularities

Helmholtz's decomposition

Corollary If f = 0, then we get in the 2D case two uncoupled

T
scalar wave equations in Q := |J Q4
t=0
¢—ciAp=0
Y —cEAp =0
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Dynamic crack singularities

Helmholtz's decomposition

Corollary If f = 0, then we get in the 2D case two uncoupled

T
scalar wave equations in Q := |J Q4
t=0

¢— AP =0
Y-y =0

The plane strain wave-field is given by

up = 81(]) + éblll,
upy — 82(]) — 81‘]1
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Dynamic crack singularities

Transformations

Current configuration, y-coordinates, there we have the wave
equations for the potentials ¢ and V,
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equations for the potentials ¢ and V,
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Dynamic crack singularities

Transformations

Current configuration, y-coordinates, there we have the wave
equations for the potentials ¢ and W,

Ly =Fi(x) = x+ h(t) 0(x).

Reference configuration, x-coordinates, there we consider the
transformed wave equations with variable coefficients, the
corresponding space principal parts are anisotropic Laplacians
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Dynamic crack singularities

Transformations

Current configuration, y-coordinates, there we have the wave
equations for the potentials ¢ and W,

Ly =Fi(x) = x+ h(t) 0(x).

Reference configuration, x-coordinates, there we consider the
transformed wave equations with variable coefficients, the
corresponding space principal parts are anisotropic Laplacians

I zfi) = X1, Zéi) = d(i)(X, t)xp, i=1,2.
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Dynamic crack singularities

Transformations

Current configuration, y-coordinates, there we have the wave
equations for the potentials ¢ and W,

Ly =Fi(x) = x+ h(t) 0(x).

Reference configuration, x-coordinates, there we consider the
transformed wave equations with variable coefficients, the
corresponding space principal parts are anisotropic Laplacians

I zfi) = X1, Zéi) = d(i)(X, t)xp, i=1,2.

Two z{)-configurations, z(/)-coordinates, the space principal parts
with frozen coefficients are Laplacians.
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Dynamic crack singularities

Crack fields

In the z()-configurations we consider the following crack fields
with time depending coefficients

3
2

3 3 3
Wf(20.1) = AD(0)05 o5 (S0 ) + 801 s (S
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Dynamic crack singularities

Crack fields

In the z()-configurations we consider the following crack fields
with time depending coefficients

3
2

3 3 3
Wf(20.1) = AD(0)05 o5 (S0 ) + 801 s (S

@ back transformations to the x- and y-configurations of these
crack fields imply ¢sing and sing
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Dynamic crack singularities

Crack fields

In the z()-configurations we consider the following crack fields
with time depending coefficients

3
2

3 3 3
Wf(20.1) = AD(0)05 o5 (S0 ) + 801 s (S

@ back transformations to the x- and y-configurations of these
crack fields imply ¢sing and sing

@ consider the components
Uy sing = 8lqssing + 82Q;[)singa

U2 sing = 82¢sing - 8lwsing-
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Dynamic crack singularities

Crack fields

In the z()-configurations we consider the following crack fields
with time depending coefficients

3
2

3 3 3
Wf(20.1) = AD(0)05 o5 (S0 ) + 801 s (S

@ back transformations to the x- and y-configurations of these
crack fields imply ¢sing and sing

@ consider the components
Uy sing = 8lqssing + 82Q;[)singa

U2 sing = 82¢sing - 8lwsing-
@ regard the Neumann conditions on the crack face
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Dynamic crack singularities

Crack fields
Finally we get under some assumptions

—f =

U(Y, t) = Ureg (Vs t)+ki(t, hy h) U1 sing(V, t)+ka(t, b, B') o sing (¥, T),
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Dynamic crack singularities

Crack fields
Finally we get under some assumptions

—

U(Y, t) = Ureg (Vs t)+ki(t, hy h) U1 sing(V, t)+ka(t, b, B') o sing (¥, T),

o (Lt as(®)?) (sHR.9,h )
1,sing — L DRa SIQ(R, 197 h, h’)
o oo(t) (s3(R,9,h,H)
H2sing = 1t DRra 522(R’ J, h, h/)
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Dynamic crack singularities

Crack fields

Finally we get under some assumptions
U(Y, t) = Ureg (Vs t)+ki(t, hy h) U1 sing(V, t)+ka(t, b, B') o sing (¥, T),
o (Lt aa(tP) (sH(R.9,hH)
1,sing — L DRa Slz(R, 197 h, h’)

oa(t) (LR, 9, b, 1)
ﬂDRa 522(R”l9a h, h/)

Uz sing = —

(R, ) are the current polar coordinates in the moving crack tip,

o = 1-—

The condition D, := 4 a1 (t) aa(t) — (1 + aa(t)?)? # 0 excludes
the Rayleigh velocity h'(t) = vg, and H'(t) = 0.
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Dynamic crack singularities

Dynamical crack fields

First dynamic singular function with the two components:

\/(Rcosﬁ — h)® + Q2(t)R?sin® 9 4 (R cos ¥ — h)
(Rcos9 — h)* + a2(t)R?sin ¥

1 /
sl(Rvﬁvhvh):\

da()as(t) | V/(Reosd — B +a3(e)Rsin® 0 + (Reosd — h)

(1+a2(t)2)\ (Rcos® — h)* + a3(t)R?sin? ¥
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Dynamic crack singularities

Dynamical crack fields

First dynamic singular function with the two components:

\/(Rcosﬂ — h)® + Q2(t)R?sin® 9 4 (R cos ¥ — h)
(Rcos9 — h)* + a2(t)R?sin ¥

1 /
Sl(Rvﬁvhvh):\

20a(t) oa(t) \/(Rcosﬁ — h)> 4 a2(t)R?sin? ¥ + (R cos ¥ — h)
(1+C¥2(t)2)\ (Rcos® — h)* + a3(t)R?sin? ¥

\/(Rcosﬁ — h)> 4 a2(t)R?sin? ¥ — (Rcos ¥ — h)
(Rcos®9 — h)* + a2(t)R2sin? 1)

st(R, 9, h,h') = —au(t)

204(t) \/(Rcosﬁ—h)2+a§(t)R2sin219—(Rcos19—h)

(14 ()?) (Rcos® — h)* + a3(t)R?sin? ¥
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Dynamic energy release rate

Energy balance law

For the running crack we have assumed an energy balance law:

D(t) = —E(t) + A(t) — K (1)
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Dynamic energy release rate

Energy balance law

For the running crack we have assumed an energy balance law:

D(t) = —E(t) + A(t) — K (1)

Knowing the behaviour of the displacement fields near the running
crack we can express the rate of the dissipative energy through the
dynamic stress intensity factors.
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Dynamic energy release rate

Energy balance law
For the running crack we have assumed an energy balance law:
D(t) = —E (t) + A(t) — K (t)

Knowing the behaviour of the displacement fields near the running
crack we can express the rate of the dissipative energy through the
dynamic stress intensity factors.

Theorem:

_ h%t) (1<— a2(t)2) (al(t)kf(t’h?hq +'a2(t)k§(t’h?hq)
2 4o (t)an(t) — (14 az(t)?)?

D(t)

14/24
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Dynamic energy release rate

Idea of the proof

Consider a family of annular domains cutting out the running
crack tip.
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Dynamic energy release rate

In the annular domain, marked by the index §, there holds:
AD(t) — E3(t) — Ko(t) = —1/ (p |52 + o (@) : e(a))a—y 7, ds
2 8Qf 81.' Y 4

_ /Cs (()\ + p)(V - 0)A + M(V[j)ﬁ) - Ozl ds,,.

Limit procedure § — 0 yields the statement.
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Dynamic energy release rate

Equation of motion for the running crack tip

If the crack growth resistance ['(h, h") is known by experiments,
then we get the ordinary differential equation for h(t):

Fhmy = D0 _ 1 [(1—az(t)2)(al(t)k%(t,h,h’)+az(t)k§(t,h,h'))]7

H(t)  2p

4as(t)az(t) — (1 + az(t)2)?
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The model Dynamic crack gularities Dynamic energy release rate The cor d problem Numerical result

Equation of motion for the running crack tip

If the crack growth resistance ['(h, h") is known by experiments,
then we get the ordinary differential equation for h(t):

D(t) 1 (1= a2(t)?) (ca(t)ki(t, h, h') + ca(t)k3 (L, h, H'))

F(hh) = h(t)  2u 4as(t)az(t) — (1+ az(t)?)? 7

where the dynamical stress intensity factors can be extracted

i /Drav/21(R(t) — h(t))
R(t)—h(t)—0 1 + az(t)? — 201 (t)az(t)

alul(_y7 t)|y2=0 — kl(t7 h7 h/)a



The model Dynamic crack gularities Dynamic energy release rate The cor d problem Numerical result

Equation of motion for the running crack tip

If the crack growth resistance ['(h, h") is known by experiments,
then we get the ordinary differential equation for h(t):

D(t) 1 (1= a2(t)?) (ca(t)ki(t, h, h') + ca(t)k3 (L, h, H'))

F(hh) = h(t)  2u 4as(t)az(t) — (1+ az(t)?)? 7

where the dynamical stress intensity factors can be extracted

i /Drav/21(R(t) — h(t))
R(t)—h(t)—0 1 + az(t)? — 201 (t)az(t)

alul(_y7 t)|y2=0 — kl(t7 h7 h/)a

41 Drar/Z(R(2) — A(D))

o1 u2(y, t)|y2:0 = kg(t, h, h/).

|-
R(9)~h(t)—0 201 (t)aa(t) — (1 + aa(t)?)

Adriana Lalegname, Anna-Margarete Sandig Wave-crack interaction in finite elastic bodies 17/24



Dynamic energy release rate

Freund 1990 and other authors have proposed to consider a mode |
crack, what leads to the following problem:
Find h(t) such that

H(t)\ (1 -2 H(t)? aq(t) k2(t, h, i
oy = (12 PO A=) P02 aal) Kb )
VRa E 24 ¢y Dgr,
= G(h, )
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Dynamic energy release rate

Freund 1990 and other authors have proposed to consider a mode |
crack, what leads to the following problem:
Find h(t) such that

H(t)\ (1 -2 H(t)? aq(t) k2(t, h, i
oy = (12 PO A=) P02 aal) Kb )
VRa E 24 ¢y Dgr,
= G(h, )

This equation will be used in our numerical experiments.
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The complete coupled problem

The complete formulation for the dynamic coupled problem for
in-plane fracture case reads:

()\ + /L)V(V . l._i) + }LVZIj = pl_itt in Q U Qt,
ci=0 on | o,
ci=pg onXy:=Tyx(0,T),

i(t,y)=0 onXp:=Tpx(0,T),
#(0,y) = i, 0:ii(0,y) = & in Qp.

i (1 - O52(1‘)2) (al(t)k%(tv h, hl) + O‘2(t)k22(t7 h, h/))
2 40 (t) aa(t) — (1 + on(t)?)?

)

F(ho)=

h(0) =0, ki(0, h, h') = k1(0), k2(0, h, h') = ka(0).

1t DRa R(t) — h(t)) dui(y,t)

ki(t,h h') = =
( )= R(t)— h(t)~>0 1+ Olz(i‘)2 - 2 a1(f) Olz(t) dy; |’V2_07

e hoH) — DR 27 (R~ HO)_dalr.t)

;
R(6)—h()—0 2a1(t) az(t) — (1 + a2(£)?)  dyi
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Numerical results to a movin

Mode | crack propagation

FINAL TRIANGULATION

N

V
Q
%

QO
N~

/

square in (y1, y2) coordinates

07750 08250 08750 09250  0.5750 1.0250

zoom of the mesh-refinement
near the crack tip
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e The complete coupled problem Numerical results to a movin

Mode | crack propagation

FINAL TRIANGULATION

Yau (10%1)

S1.250 0750 -0.255 0255  0.750  1.250

square in (y1, y2) coordinates

07750 08250 08750 09250  0.5750 1.0250

zoom of the mesh-refinement
near the crack tip

i(y,t) =0, at y; = —1,
o - 7i=1000N/m?on y, = —1 and y, = 1,

o-7id=0on thecrack, o-ri=0ony =1,
Note, that the crack is running from right with the starting
position h(0) = 0.9.
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Numerical results to a movin

Equation for the crack motion

/ .2
VRa E

k]_ static — 0.01 Pa -m
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Numerical results to a movin

Equation for the crack motion

/ .2
VRa E

k]_ static — 0.01Pa -m
Initial conditions fot t = 0 with h(0) = 0.9, '(0) = 0.5vRa:

(1+ ax(0)?) (sll(R, 9, h, h’))

U(y, 0) = ki static 1 Dga 512(I'_\’7 ’(9, h, h/)
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Numerical results to a movin

The iterative procedure

@ Set geometrical and input material properties data of the
problem, in particular, set f = 0 and choose the timesteps.
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Numerical results to a movin

The iterative procedure

@ Set geometrical and input material properties data of the
problem, in particular, set f = 0 and choose the timesteps.

© Set initial and boundary conditions.
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Numerical results to a movin

The iterative procedure

@ Set geometrical and input material properties data of the
problem, in particular, set f = 0 and choose the timesteps.

© Set initial and boundary conditions.

© Solve IBVP for the wave equation in the cracked domain with
given straight crack path hg = h(0).
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Numerical results to a movin

The iterative procedure

@ Set geometrical and input material properties data of the
problem, in particular, set f = 0 and choose the timesteps.

© Set initial and boundary conditions.

© Solve IBVP for the wave equation in the cracked domain with
given straight crack path hg = h(0).
@ Extract ki(t, h, h") from the discrete FEM solution.
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Numerical results to a movin

The iterative procedure

Set geometrical and input material properties data of the
problem, in particular, set f = 0 and choose the timesteps.

Set initial and boundary conditions.

Solve IBVP for the wave equation in the cracked domain with
given straight crack path hg = h(0).

Extract ki(t, h, h’) from the discrete FEM solution.

Compute H'(t1) and h(t1) using the dynamic fracture criterion.

©006 00 ©

Remesh with respect to the new crack tip position.
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Numerical results to a movin

The iterative procedure

@ Set geometrical and input material properties data of the
problem, in particular, set f = 0 and choose the timesteps.

@ Set initial and boundary conditions.

© Solve IBVP for the wave equation in the cracked domain with
given straight crack path hg = h(0).

@ Extract ki(t, h, h") from the discrete FEM solution.

© Compute W' (t1) and h(t1) using the dynamic fracture criterion.

© Remesh with respect to the new crack tip position.

@ Interpolate previous mesh nodal data for finding corresponding
data of present mesh.

The FEM-package PDE2D (Sewell, Univ.Texas) was used.
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Numerical results to a movin

Numerical results

The relative stress intensity factor /~q =% ktl — versus the time
static

Normalized dynamic stress intensity factor k

3
25
2
15
1
0.5
0
-0.5
-1
15 s
2fF i
-25

Kyt R e

normalized k/kg

-3
0 05 1 15 2 25 3 35 4 45 5 55 6 65 7 75
tsl1e™)

There is an oscillatory behaviour as the initial crack length
increases, but it tends to ki static-
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Numerical results to a movin
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