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The theoretical model and the matched asymptotic procedure

N

(b) Singularities =
Stress concentration

The bonded specimen and two kinds of loading, tension (a) and 4-point bending (b).

Lamé’s coefficient A" and #" (the SiC substrates)
Lamé’s coefficient A" and " (the BraSiC® joint)

Assumption: e << h



The equations

-

—o; . =0 in Q° (balance)
o, =A+2uU; +AU;, inQ° (constitutive law)
o, =u(U5,+U;,) in Q° (constitutive law)

10,  =(A+2u)U;, +AU;; inQ° (constitutive law)
oy ==T on the right (resp. left) face of the specimen
oL =0 on the right (resp. left) face of the specimen
on, =0 elsewhere on the boundary

A and g stand for A" and 4" in the layer and for A" and 4" in the matrix.



Asymptotic expansions Nguetseng and Sanchez-Palencia (1985), Leguillon (1995),
Leguillon and Abdelmoula (2000) and Haboussi et al. (2001)

U® (%, %) =U° (%, %) +e U (x, %) +e? U’ (x,X,).

The different terms are solution to problems settled on the simplified domain
Q° =1imQ°, the bonding layer is not visible

e—0

X5 \
(a) ‘ X, (b) No stress

concentration!

The limit domain Q°.



The simplified equations at the leading order

U°(x,,X,) is continuous through the line T and fulfils

f—ai‘j), ;=0 in Q° (balance)
on =AM +2u"U7 +2A"U;, inQ° (constitutive law)
o, =u"(U},+U3,) in Q° (constitutive law)
1o, =AM +24")5, +AMU in Q° (constitutive law)
oL ==T on the right (resp. left) face of the specimen
oL =0 on the right (resp. left) face of the specimen
\oij’n ; =0 elsewhere on the boundary



Then U°(x,%,) =T (X, %) +..

With (uniform tension)

( aM 4 2,M aM 4 2,M
b4, %,) = 4" /IM/J R T /IMﬂ —— rcose
< (AT + ) wo (AT +u)

AM AM .
th(x,x) =- X, =-— rsin@
) S G e T )

Note that power 1 has a multiplicity 2, the rigid rotation is the second mode.



The next term of the expansion
It results of a matched asymptotic procedure.

Change of variables x, >y, =x /e X, > X,
Stretched domain Q™ unbounded in the y, direction as e — 0

Qe(xi’ X,) :Qe(eyl’xz) :\io(yl’ X,)+e \il(ypxz) T

Derivation rules *, =1/eo0*/oy, *,=0*/0x, leads to a system of differential

equations in the variable y, with matching conditions for y, — +oo in the core (i.e.
omitting the stress free boundary condition at x, =0)



‘Vlo(yl’xz) — Ulo(o’ Xz)
Vzo(Ysz) = UO(O X, )
GUO

1+
Vlji(yl,xz) — axll (0, x )+U (0,x )
8U0 1+
Vzﬁ(yl’xz) — axf (O X )+U (O X )
AM -2t au!?
8U° 1+ 1 0,%)
Vit (Y %,) = 5)(11 (0.%,)+Uy"(0.%,) +(2y, 7 ){2(1%2# ") %,

—(0,%,)

(A" +24") (2" +24") U }
" 2(A"+2u") %,

V5 (Y X,) = 82<0x)+u“(0x>+(2y1+1)“ L(0,%,) +—2(0,%,)

auo Mt oU? oU?
2u" OX, 0%,
1



Jump at order 1

Continuity conditions on the previous term imply discontinuity conditions for U*

through the line I". They read as B

( 1 1 AV At
U, =o, — +U) —
II 1]] ll(ﬂL +2,uL AM +2,u'vI j 2’2[/1'\" +2,u'vI At +2uLj

1 1
) 2] 12 ,UL ,LlM
|on] =0
A . 2t . 4,uL(/1L +,uL) .
__612 | =011 — ﬂ,L N 2,UL 0112 — ﬂ,l‘ 4 Z,UL U2,22

This is not surprising since a part of the stiff substrates is replaced by a more compliant
material: the adhesive.



The stress free boundary condition out of the layer

( YA oVE
o,(y,0) = ,UM ( 8X1 (y,,0)+ 8;
2 1

(yl,O))

w [ oU;. ou, .
= 0,0 0,0) |=c2(0,0)=0
Y7 (axz (0,0) + ox, (0,0) |=0,(0,0)

0 1+
N (3,00 + 2 C
o, o,

0 0
o (0,0) + A" 8@U1

T, (Y:,0) (lM "‘ZHM) (y.,0)

= (/IM +2,uM)

4 X2

(0,0) = 53,(0,0) =0




The stress free boundary condition within the layer

oV, ov,"
o,(¥1,0) =u [5 (¥,0) +—= oy (y110)]

2 1

ou; ou, 0 B
= H (8 (0,0) + o (0, O)] 01,(0,0)=0

2 1
oV, oV,
& (¥1,0) =(AL+2¢)82<1,0) + 25— (¥,,0)
2 1
0 M L 0 M
az AN+ 2ut ox, AN +2ut ox

Not surprisingly, this term vanishes only if (i.e. no necking)

AM B A"
44" (/IM + 1™ ) - 4,uL(lL +,uL)




The modified inner expansion

Let us replace T f(xl,xz) for Qo(xl,xz) in the jJump conditions and in the set of
equations

-

| 1 1 A" AN At
<HU11~]:TH1L+2¢ AN 2" j_zw (A" + ™ )(ﬂ +2u" _AL+2¢H:TC1
[ui]=0: [oi]=0: o] =0

We substitute also y, for ex, to have a domain spanned by y, and vy, since we are only
Interested in the vicinity of the bonding end.




"Vlo(yl’eyz) = 0
0 M
V e = T e
> (Y1,€Y5) " (/1M+/1M) Y,
AM + 2™ C
VE(y. e —_— +T L
o (Yiey,) e (/IMWM)yl >
IVE(y,ey,) = TC,+UL(0,ey,)
AM 42 C aM b AM
VE(y. e — +T 24T (2y. 71)| -
1 (yl yZ) 4IL[M (ZM —|—IL[M)y1 2 ( yl )|: 2(1L+2ﬂL)4IL[M (ﬂdM —|—IL[M)
(A" +2u™ )= (A" +2u") M 42"
_|_
Z(AL +2,uL) 41 (/IM +yM)
VE(y,.ey,) = TC,+U(0,ey,)

with y, =x, /e



then U° (%, %) =U°(ey,,ey,) =W’ (¥, ¥,) +e W (¥, ¥,) +...

The unbounded half space and the loading for le(yl, Y,).



Additional term V_\71(y1, y,) to compensate the boundary condition imbalance

e e ~1
U (4, %) =U° (63,,09) =W (3, ¥2) +& | W' (3 v+ () | -

New boundary conditions

-

/1 2!
oW, (y,,0) + oW,
6)’2 6)’1

G,(y,,0) =pu" ( (yl,O)) =0 fory,<-1/2andy, >1/2

~ ~

1 1
Gp(¥1,0) =(A" +2u" )(SaWZ (y,,0)+ A a(;Nl (y,,0)=0 fory,<-1/2andy, >1/2

2 Y1

2! !
6:2(y.,0) :ﬂ{i’y\ll (y1,0>+f;yﬂ(yl,0)j=o for ~1/2<y, <1/2
2 1
oW} oW,

(y,,00=—P for -1/2<y, <1/2

62 (,0) =(2"+2u")TE (100 + 25

4 2 y]_



Such a problem is unbalanced and thus ill-posed from a static viewpoint. It behaves at

infinity like the point force solution F(y,,Yy,) (Timoshenko and Goodier 1951)
involving a logarithmic term

-

P( 1 . 1 T
F (Y, =—— sin@cosd + 0 —
e n(zw 207+ ") A" +uM)j
<
M M M
F, (Y1, Y2) == ﬁ +M2ﬂ ~Inp+—; /IM —C0s° 0 — Ml ——sin’ @
\ m\2u” (A" +u™) 2" (A7 + ) 2(A7 + ™)

~1 e
W (Y Y.) = E(Y Y,) +W (YL Y,)
1

V_\7 (y,,Y,) 1s now solution to a well-posed problem

(this is not trivial and more precisely a cut-off function must be used in the above
relationship since F is singular at both ends in r i.e. at the origin and at infinity)



The modified outer expansion

U® (%, %) =U" 04, %,) +e U (%, %) + ATeU " (x, X,) +.
with

:1
U'(x,%,)=TC+F(x,X%)+U (X,X,)

l.e. jump + point force + complementary term

U2(%,%,) =t(r,0)+U° (x,x,)

With
( 1 cos 26
t—l(p’e):_
]’ p u
1 sin26
t, (0,0) =——
0 (/0 ) IO /IM +2/,IM

l.e. a kind of pinching (the dual mode to the uniform tension, note that for the same
power -1, the torque is the dual mode to the rigid rotation)



Outline

Near the end of the bonding zone

Far field

Leading term - smooth solution, no stress concentration

Order 1 correction = jump in the core + point force acting on the boundary
Order 2 correction = pinching acting on the boundary

Near field

Leading term = smooth solution, no stress concentration

Order 1 correction > bimaterial interface singularities



Brazing of ceramics

X
Order O - Order O
(a) X, (b)

‘ Order 1 + jump ‘ Order 1 + jump



Step over mechanism
Order O

+ + ¢ 443 L4y + 4+ 434 L3l

L S N I A A R (I S N I A B B A

+ + 4+ 33 443y

1
VvV

L N D B S B S Order 1 + jump



Nucleation of a crack at the end of the brazing zone

%
L,Jl

LAY

1+

Tt i THT
(a) (b) (c)

Adhesive (a) and cohesive (b and c) failures

The change in the expansions occurs through a single parameter A®

U® (%, %) =U" (%, %) +e U (x, %) + ATe’U" (x,X,) +.



The tensile stress prior to failure (first condition for fracture)

Normalized tensile stress

1.00 -

0.80 -

Y1

0.60 . . . .
0 1 2 3 4 3)

The normalized tensile stress along the interface.




1.00

0.80 -

Y1

0.60 . . . .
0 1 2 3 4 3)

The normalized tensile stress along the presupposed crack path in the matrix.



1.00 -

0.80 -

0.60 -

Y1

0.20 1 1 1 1
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The normalized tensile stress along the middle line in the layer.

Stress condition o, > o, (tensile strength)




The energy release rate (second condition for fracture)

Change in potential energy prior to and following the crack nucleation
SWP =e?(A - AO)T\P(QZ,QO)+...

A‘ is a priori the only coefficient to depend on the crack location

Energy release rate

p s _ AO
G W _A-A T\P(g(’,gz)+...
l S
p s A0 & A0
G:—éVZ N é:A TZT(;1,1_1)+...:6 g(&) T? +... with g(&) = A A

‘P(’gl,

| —+



g(&) =0.0044 x £ almost independent of the crack location

eg(e)T?2G, = T2 / S, (toughness)
e g(¢$)

The tensile stress at failure depends on the layer thickness as 1/ Je.
The dimensionless crack length & is unknown.

Energy criterion

The experimental points come from a large number of tests conducted on various
grades of brazing material and are recorded in the databases of Astrium Co. They are
fitted by a least-square method.



o
J e

e(pm)

The approximation of the tensile stress at failure.




Nevertheless, to be predictive, the law must be identified without going through the
least square procedure.

e

Here e, and T, correspond to an experimental data point.



Thank you for your attention



