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The Name of the Game:

Plasma near a conducting sharp end
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Stationary Vlasov–Poisson system in Ω ⊂ Rd:

v · ∇xf + E(x) · ∇vf = 0, (x, v) ∈ Ω× Rd, (1)

E(x) = −∇x (φ[f ]− φe) (2)

−∆φ[f ] =
∫

Rd

f(x, v) dv := ρ[f ], x ∈ Ω, + bdy cond’n, (3)

−∆φe = ρe, x ∈ Ω, + bdy cond’n. (4)

I f(x, v): distribution function of charged particles (electrons)
= density in phase space (x, v)

I ρ[f ](x): spatial density of particles.
I φ[f ](x): self-consistent potential.
I φe(x): external (confining) potential.
I ρe(x): density of “neutralising background” (ions).
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Existence and Uniqueness

Any couple (f, φ[f ]) satisfying (Boltzmann problem) f(x, v) = γ
(

1
2 |v|

2 + φ[f ](x)− φe(x)− β
)

−∆φ[f ] = ρ[f ] (+ bdy cond’n),

∫
Ω×Rd

f dxdv = M,
(5)

(γ arbitrary function, M ≥ 0 given, φe given by (4)), is a solution
to Problem (1–3).

Proposition 1: Assume (inter alia) that γ is a positive, strictly
decreasing function. There exists a unique solution (f, φ[f ]) to (5),
for any mass M .
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Proof: Consider the space:

L1
M (Ω× Rd) := {f ∈ L1(Ω× Rd) :

∫
Ω×Rd f dxdv = M}.

The function f is the minimum on L1
M (Ω× Rd) of the functional:

J [f ] =
∫

Ω×Rd

(
σ(f) + (

1
2
|v|2 − φe) f

)
dxdv +

1
2

∫
Ω
|∇φ[f ]|2dx,

where σ′ = −γ−1. The Euler–Lagrange equation reads:

−γ−1(f) + 1
2 |v|

2 − φe(x) + φ[f ]− β = 0 (σ′ = −γ−1)

β: Lagrange multiplier of the constraint
∫

Ω×Rd f dxdv = M .

Existence of the minimum: γ strictly ↘ =⇒ σ strictly convex
=⇒ J strictly convex + technical assumptions.
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Reinterpretation: non-linear elliptic problem

Problem (5) is equivalent to solving:

−∆φ = ρ = G (φ− φe − β) (6)

where G(s) := Cd
∫ +∞

0 γ(s+ r) rd/2−1 dr and β is defined by:∫
Ω
G
(
φ− φe − β

)
= M.

Boundary condition:

φ = 0 on ΓC ∪ ΓD, ∂νφ = 0 on ΓN . (7)

The data φe is solution to the linear problem:

−∆φe = ρe ∈ L∞(Ω), ∂νφe = 0 on ΓN ,
φe = 0 on ΓC , φe = φin on ΓD, φin ∈ H1/2(ΓD) ∩ L∞(ΓD).

∂Ω = ΓC ∪ ΓD ∪ ΓN , with ΓD and ΓN possibly empty.
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Proposition 2: For any fixed β, there exists a unique solution to
Problem (6-7), and φ is the minimum of the functional:

F [φ] =
∫

Ω

1
2
|∇φ|2 + G(φ− φe − β) dx,

where G′ = −G, on the space V of functions defined by :

V = {w ∈ H1(Ω) : w = 0 on ΓC ∪ ΓD}.

Proof: γ strictly ↘ =⇒ G strictly ↘ =⇒ G strictly convex

=⇒ F strictly convex.

V.F.:

∫
Ω
∇φ · ∇ξ =

∫
Ω
G(φ− φe − β) ξ, ∀ξ ∈ V.
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A First Monotonicity Property

Non-linear elliptic comparison principle (Lions):
Let φ1 and φ2 be two solutions corresponding to β = β1 and β2.

If β1 ≥ β2 then φ1 ≥ φ2 in Ω.

Theorem 1: Define the mapping

µ : R −→ R+

β 7−→ M =
∫

Ω
G(φ− φe − β) dx,

where φ is the solution to Problem (6–7).
Then, µ is a nondecreasing, one to one and onto mapping.
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Regularity of solutions

f ∈ L1(Ω× Rd), φ[f ] ∈ H1(Ω), ρ[f ] ∈ L1(Ω) ∩H−1(Ω).

−∆φ = ρ = G(φ− φe − β)

We assume γ such that G ∈ L∞loc(R).

G(•) ≥ 0 =⇒ ρ ≥ 0 =⇒ φ ≥ 0

φe ∈ L∞(Ω)
G ∈ L∞loc(R), G ↘

}
=⇒ ρ ∈ L∞(Ω)

Thus, for all p ∈ [1,∞],

φ ∈ Φp := {u ∈W 1,p(Ω) : ∆u ∈ Lp(Ω), u = 0 on ΓC ∪ ΓD}.

p large enough: Φp ⊂ C(Ω) =⇒ ρ ∈ C(Ω) if φe ∈ C(Ω).
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Corner behaviour
We assume that Ω is a bounded polygonal domain in R2, with one
re-entrant corner of opening π/α (1/2 < α < 1).
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Corner singularities

[Grisvard 85, 92. . . ]: for all p ∈
(

2
2− α

,
1

1− α

)
we have:

φ = φR + λχ(r) rα sin(αθ)

where φR ∈W 2,p(Ω) is the regular part of φ, λ = −
∫

Ω
∆φPs is

the singularity coefficient and Ps is the dual singularity given by:

−∆Ps = 0 in Ω, Ps = 0 on ΓD ∪ ΓC ,
∂Ps
∂ν

= 0 on ΓN ;

Ps = 1
π r
−α sin(αθ) + l.s.t. near the reentrant corner.
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Theorem 2: Let φ be the solution to Problem (6) and
φR ∈W 2,p(Ω) the regular part. There exists g ∈ L∞(Ω) such that

χ(r)φR(r, θ) = r sin(αθ) g(r, θ), ‖g‖L∞(Ω) ≤ C ||φR||W 2,p(Ω).

Consequences:

I The singular term is dominant near the corner.

I Let (f1, φ1) and (f2, φ2) be two solutions to Problem (5)
associated to M1 and M2 respectively.

If M1 ≥M2, then λ1 ≥ λ2.

I For β ≥ −G−1(||ρe||L∞), we have φ ≥ φe in Ω and λ ≥ λe.
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Behaviour w.r.t. mass
Now we assume a Maxwellian distribution: γ(s) = e−s,
Problem (5) becomes: (Maxwell–Boltzmann problem)

−∆φ = κ eφe−φ := ρ,

∫
Ω
ρ dx = M. (8)

Theorem 3: As M → 0, we have

κ ∼M
(∫

Ω
eφe dx

)−1
and λ ∼ κ

∫
Ω

eφe Ps dx.

Proposition 3: As M →∞, we have κ→∞ and

φ→∞ a.e. in Ω, ρ/κ→ 0 in Lp(Ω), ∀p <∞,
φ/κ→ 0 in H1(Ω) ∩ C(Ω).

Remark: a boundary layer appears near Dirichlet boundaries.
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Numerical simulation

Pbm (8) ⇐⇒
minimise J [ρ] =

∫
Ω(ρ ln ρ− φe ρ+ 1

2 |∇φ[ρ]|2) dx

on L1
M (Ω) =

{
ρ ∈ L1(Ω) :

∫
Ω ρ = M

}
.

Algorithm:
I Initialization: choose ρ0 ∈ L1

M (Ω) and ` ∈ N.
I Step n+ 1: set ρn,0 := ρn, then

I For j = 1, . . . , ` compute
ρn,j = result of one conjugate gradient iteration
for J on L1

M (Ω), starting from ρn,j−1.

I Regularization: solve −∆φn+1 = ρn,`, then
ρn+1 = M eφe−φn+1

/(
∫

Ω
eφe−φn+1

).
I Stop: ‖ρn+1 − ρn,`‖ < εM.

Remark: solution of Laplacian by singular complement.
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φe ≡ 0, ρ ∝ e−φ, φ = 0 on Γ and M = 70

Without regularization, ρ is very noisy (L1(Ω) hardly regular).
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φe ≡ 0, ρ ∝ e−φ, φ = 0 on Γ and M = 70

SCM does not dramatically improve computation of φ:
non-linear effects stronger than singular behaviour?
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φe ≡ 0, φ = 0 on Γ and M = 500

The corner singularity is “hidden” in the boundary layer.
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An example with a neutralising background

ρe = 1 + ε sin(2πx) sin(2πy); ρ has the same mass as ρe.
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An example with a neutralising background

−∆φe = ρe; −∆φ = ρ ∝ eφe−φ; φe = φ = 0 on Γ.
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Open problems

I Representation formula for λ = λ[M ; ρe, φin]
(at least in Maxwellian case?)

I Asymptotics of λ as M →∞? as φin →∞?

I Asymptotics of ρ and φ?
Limiting problem: φ =∞, ρ = 0. . .

I What if γ(•) not decreasing? (Cavity/guided BGK modes?)
I Extension to time-dependent problems:

I Quasi-neutral models:
fluid (kinetic) ions + “Boltzmannian” electrons

I Full Vlasov–Poisson. . . Vlasov–Maxwell. . .
Mere existence of solutions unknown.

I Realistic modelling of lightning???
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