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The model Existence/uniqueness Gen. properties Corner behaviour
:

Behaviour/mass

Numerical simulation

Open problems

The Name of the Game:

Plasma near a conducting sharp end

o = = E 9ace
:
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The model Existence/uniqueness Gen. properties Corner behaviour Behaviour/mass Numerical simulation Open problems
:

Stationary Vlasov—Poisson system in {2 C R%:

v-Vf+E()-Vf:O (z,0) € AxRY (1)
E(z) = =V, — Pe) (2)
— A¢[f] / f(z,v) dv = plf], x €8, + bdycond'n, (3)
— A¢pe = pe, x €8, + bdycond'n. (4)
» f(x,v): distribution function of charged particles (electrons)
= density in phase space (z,v)
> p[f](z): spatial density of particles.
> o[f](x): self-consistent potential.
> ¢.(x): external (confining) potential.
> pe(x): density of “neutralising background” (ions).
o & = = 9ace
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The model Existence/uniqueness Gen. properties Corner behaviour Behaviour/mass Numerical simulation Open problems

Existence and Uniqueness

Any couple (f, ¢[f]) satisfying

(Boltzmann problem)
f(ac,v) =7 (%|’U|2 + ¢[f]((1:) - ¢€(CC) - /6)
—A¢[f] = plf] (+ bdy cond’n),

fdedv =1, )
QxR4
(v arbitrary function, A > 0 given, ¢, given by (4)), is a solution
to Problem (1-3).

o = = E E 9ace
:
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:

Existence and Uniqueness

Any couple (f, ¢[f]) satisfying (Boltzmann problem)

fla,0) =7 (3ol + 6[f](2) — de(2) - 5)

~A9Lf) = plf] (+ bdy cond'n). | fdudo =11,

(5)

(v arbitrary function, A > 0 given, ¢, given by (4)), is a solution
to Problem (1-3).

Proposition 1: Assume (inter alia) that -y is a positive, strictly
decreasing function. There exists a unique solution (f, ¢[f]) to (5),
for any mass M.

it
S
yel
Q

:
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Proof:

The model Existence/uniqueness Gen. properties Corner behaviour Behaviour/mass Numerical simulation Open problems

Consider the space:

Li(QxRY = {f e LYQ x RY) : [, pa fdzdv = M}.
The function f is the minimum on L} (Q x RY) of the functional:
_ L2 1 2
= [ (ot + Gl = o) £)dodo-+ 5 [ Vol

where 0/ = —y~!. The Euler-Lagrange equation reads:

—yHf) + 2 )2 = de(z) + 9[f] — B=0

(o' =
(B: Lagrange multiplier of the constraint foRd fdxdv= M.
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:

Proof: Consider the space:

Li(QxRY = {f e LYQ x RY) : [, pa fdzdv = M}.

The function f is the minimum on L} (Q x RY) of the functional:

= [ (ot + G =00 £)dsdo-+ 5 [ 96l
xR Q
where 0/ = —y~!. The Euler-Lagrange equation reads:
7O+l = de@) + 0[] -B=0 (o
(B: Lagrange multiplier of the constraint foRd fdxdv= M.
Existence of the minimum: -~ strictly \, = o strictly convex

= J strictly convex + technical assumptions.

=] F
;
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Reinterpretation: non-linear elliptic problem

Problem (5) is equivalent to solving:

—Ap=p=G(d—¢e— )
where G(s) := Cq [;7° (s +r)r¥?> 1 dr and B is defined by:

(6)
[ cto—oc=s) =
Boundary condition:

¢p=0onTcUTp,

Oy, =0on I'y. (7)

The data ¢, is solution to the linear problem:
—A¢e = pe € L®(Q), 0y =0o0n Ty,
¢e =0o0nTc, ¢e=¢inonlp,

0QY=TcUIl'pUTIy, with I'p and I'y possibly empty.

1/2 00
din € HY/*(Ip) N L®(T'p).
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:
Proposition 2: For any fixed (3, there exists a unique solution to

Problem (6-7), and ¢ is the minimum of the functional:

Flo) = [ 51V67 + 66— 6. = 6)da,

where G’ = —G, on the space V of functions defined by

V={wecH Q) :w=00onTcUIp}.

o = = A
:
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:
Proposition 2: For any fixed (3, there exists a unique solution to

Problem (6-7), and ¢ is the minimum of the functional:

Flo) = [ 51V67 + 66— 6. = 6)da,

where G’ = —@, on the space V of functions defined by :
V={wecH Q) :w=00onTcUIp}.
Proof:

v strictly \, = G strictly \, = ¢ strictly convex
—> F strictly convex.

VE. /ﬂqu-Vﬁ:/QG(qb—cbe—ﬁ)&, VEeV.
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The model Existence/uniqueness Gen. properties Corner behaviour

Behaviour/mass

Numerical simulation

Open problems

A First Monotonicity Property

Non-linear elliptic comparison principle (Lions):

Let ¢1 and ¢2 be two solutions corresponding to 6 = (31 and (.
If 61> B2

then ¢1 > ¢o in Q.

o = = A
:
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A First Monotonicity Property

:
Non-linear elliptic comparison principle (Lions):

Let ¢1 and ¢2 be two solutions corresponding to 6 = (31 and (.
If 81> [

then ¢1 > ¢2

in .
Theorem 1: Define the mapping
p: R — RT
g M= [ G- 6P
Q
where ¢ is the solution to Problem (6-7).
Then, w is a nondecreasing, one to one and onto mapping.
o = = = = Q>
| Stationary Solutions to the Vlasov—Poisson System in Singular Geometries |




The model
:

Existence/uniqueness Gen. properties Corner behaviour Behaviour/mass Numerical simulation

Regularity of solutions

Open problems

fe L QxR ¢f] € H(Q), plf] € L'(Q) N H ().

o = A
:
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Regularity of solutions

The model Existence/uniqueness Gen. properties Corner behaviour Behaviour/mass Numerical simulation Open problems

fe L QxR ¢f] € H(Q), plf] € L'(Q) N H ().
—A¢=p=G(¢—¢e— )

We assume 7 such that G € L{X (R).

G(e) >0 — p=20 = ¢>0
pe € L=(2)
GeLX(R), G\, } —

peLXQ)

o = = E E 9ace
:
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p large enough: ®, C C(Q) = peC(Q)if ¢ € C(Q)

Regularity of solutions

The model Existence/uniqueness Gen. properties Corner behaviour Behaviour/mass Numerical simulation Open problems

fe L (QxRY), ¢lf] € H'(Q)

[f] € LY(Q) N HYQ).
—A¢p=p=G(p— ¢ — P)
We assume 7 such that G € L{X (R).
G(e) >0 =
¢e € L®(Q)

p=20 = ¢20
GGLIOC(R)’ G \‘ } - pEL (Q)
Thus, for all p € [1, 0]

peD,:={ucWh(Q): Auc LP(Q), u=0onTcUTp}

(=]

=




The model Existence/uniqueness Gen. properties Corner behaviour
:

Behaviour/mass
Corner behaviour

Numerical simulation

Open problems

We assume that 2 is a bounded polygonal domain in R?, with one
re-entrant corner of opening 7/ (1/2 < a < 1).
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Corner singularities

The model Existence/uniqueness Gen. properties Corner behaviour Behaviour/mass Numerical simulation Open problems

[Grisvard 85, 92...]: for all p € (

2 1 e have
— —— | w ve:
2—a’' 1l—«

¢ = odr+ Ax(r)r® sin(ad)
where ¢, € W2P(Q) is the regular part of ¢, A = —

A¢ Py is
Q
the singularity coefficient and P; is the dual singularity given by:
—AP; =0

P,
inQ), P;=0 onl'pUTly, oF

ov
Py =1r7%sin(af) +ls.t. near the reentrant corner.

=0 onI’N;
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The model

Theorem 2:

Existence/uniqueness Gen. properties Corner behaviour Behaviour/mass Numerical simulation

Open problems

Let ¢ be the solution to Problem (6) and
or € W2P(Q) the regular part. There exists g € L°°(Q) such that
x(r) or(r, 0) = rsin(ad) g(r,0),

9l @) < Cllorllw2r0)-

o = = A
:
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Theorem 2:

The model Existence/uniqueness Gen. properties Corner behaviour Behaviour/mass Numerical simulation Open problems

Let ¢ be the solution to Problem (6) and
or € W2P(Q) the regular part. There exists g € L°°(Q) such that
x(r) or(r, 0) = rsin(ad) g(r,0),

Consequences:

9l @) < Cllorllw2r0)-

» The singular term is dominant near the corner.

> Let (f1, 1) and (f2, $2) be two solutions to Problem (5)
associated to M and Ms respectively.

If My > Ms, then A\i > Ao.
> For 3> —G71(||pe||lr=), we have ¢ > ¢, in Q and A > ..
:
Stationary Solutions to the Vlasov—Poisson System in Singular Geometries

=




The model

Existence/uniqueness  Gen. properties

Corner behaviour  Behaviour/mass

Behaviour w.r.t. mass

Numerical simulation

Open problems

Now we assume a Maxwellian distribution: ~y(s) =e~*
Problem (5) becomes:  (Maxwell-Boltzmann problem)

—Ap = reP ¢ = p, /pdsz.
Q

(8)

o = = A
:
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The model

Existence/uniqueness Gen. properties Corner behaviour Behaviour/mass Numerical simulation

Behaviour w.r.t. mass

Open problems

Now we assume a Maxwellian distribution: ~y(s) = e~
Problem (5) becomes:

S
(Maxwell-Boltzmann problem)

—Ap = reP ¢ = p, /,oda:zM.
Q
Theorem 3: As M — 0, we have

—1
K;NM(/e%dx) and Awﬂ/e¢ePsdx
Q Q

(8)

o = = A
:
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¢/k — 0 in H(Q)NC(Q).
Remark:
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Behaviour w.r.t. mass

The model Existence/uniqueness Gen. properties Corner behaviour Behaviour/mass Numerical simulation Open problems

Now we assume a Maxwellian distribution: ~y(s) =e*%,
Problem (5) becomes:  (Maxwell-Boltzmann problem)

—Ap = reP ¢ = p, /pda:zM.
Q
Theorem 3: As M — 0, we have

—1
K;NM(/e%dx) and Awm/e¢ePsdx.
Q Q

Proposition 3: As M — oo, we have kK — oo and

(8)

o —o00 ae inQ, p/k—0 inLP(Q), Vp< oo,
a boundary layer appears near Dirichlet

boundaries.
] = = =




Numerical simulation

The model Existence/uniqueness Gen. properties Corner behaviour Behaviour/mass Numerical simulation Open problems

Pbm (8) <

on

minimise  J[p] = [o(pInp — de p+ 5|Vop]|?) d
Ly (@) ={pe L"): [op=M}.

o = A
:
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The model Existence/uniqueness Gen. properties Corner behaviour Behaviour/mass Numerical simulation Open problems
: :

Numerical simulation

minimise  7[o] = fo(plnp — 6 p + $V6[p][2) da

Pbm (8
®) = on Ly Q) ={peL'(Q): [(p=M}.

Algorithm:
» Initialization: choose p° € L},(Q2) and ¢ € N.
» Stepn+ 1: set p0:=p* then
» Forj=1, ..., £ compute
p™7 = result of one conjugate gradient iteration
for 7 on L},(f), starting from p™J—1,
» Regularization: solve —Ag@"t! = p™*  then
Pt = Me¢e—¢"“/(f9 efe=d"T),
» Stop:  ||p"t! — p™f| < e M.

Remark: solution of Laplacian by singular complement.
] = =

: :
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The model Existence/uniqueness Gen. properties Corner behaviour Behaviour/mass Numerical simulation Open problems
;

pe=0,pxe® ¢=0onT and M =70

tho tho regularise

zev0z 06

2e+02

16e+02 160402

11402 0.1+ 1.1e+02

E3 o

Without regularization, p is very noisy (L!(£2) hardly regular).
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Numerical simulation

¢650,poce*¢,¢:00nFandM:70

phi (using SCM) | phi_SCM - phi_usual |

0072

0054

0036

0018

12615

SCM does not dramatically improve computation of ¢:
non-linear effects stronger than singular behaviour?
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¢ =0, ¢=0o0nT and M = 500

tho phi
66e+03 51
Se+03 a8
350403 25
176403 I
41 o
nad

The corner singularity is “hidden” in the boundary layer.
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An example with a neutralising background

rho_e

rho

.
. |-
7
] o

r T | Fn
5 b ds :

1.008

1004

09959

09919

d
5

pe = 1+ € sin(27z) sin(2my); p has the same mass as pe.
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Numerical simulation

Open problems
An example with a neutralising background

phi_e

005331

003998

oosas1
003998
0.02865 0.1+ 0.02665
o013 o013
-2.468¢-17 -2.468e-17
ds 3 os s 8 os
—Ape = pe; —Ap=poxe®  $p,=¢p=0onT.
o = = E E
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The model Existence/uniqueness Gen. properties Corner behaviour
:

Behaviour/mass
Open problems

Numerical simulation

Open problems

o = A
:
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The model Existence/uniqueness Gen. properties

Corner behaviour

Behaviour/mass
Open problems

Numerical simulation

Open problems

» Representation formula for A\ = \[M; p., ¢in)
(at least in Maxwellian case?)

o = = E 9ace
:
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Existence/uniqueness  Gen. properties

Corner behaviour

Behaviour/mass
Open problems

Numerical simulation

Open problems

» Representation formula for A\ = \[M; p., ¢in)
(at least in Maxwellian case?)

» Asymptotics of A\ as M — c0? as ¢, — 007

o = = E 9ace
:
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Open problems

» Representation formula for A\ = \[M; p., ¢in)
(at least in Maxwellian case?)

» Asymptotics of A\ as M — c0? as ¢, — 007
» Asymptotics of p and ¢?
Limiting problem: ¢ = o0, p =0...

Stationary Solutions to the Vlasov—Poisson System in Singular Geometries

00




The model Existence/uniqueness Gen. properties Corner behaviour Behaviour/mass Numerical simulation Open problems
: :

Open problems

» Representation formula for A\ = \[M; p., ¢in)
(at least in Maxwellian case?)

» Asymptotics of A\ as M — c0? as ¢, — 007
» Asymptotics of p and ¢?
Limiting problem: ¢ = o0, p =0...
» What if 7(e) not decreasing? (Cavity/guided BGK modes?)

o
o)

I

i
it
)
»
Q

: :
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: :

Open problems

» Representation formula for A\ = \[M; p., ¢in)
(at least in Maxwellian case?)
» Asymptotics of A\ as M — c0? as ¢, — 007
» Asymptotics of p and ¢?
Limiting problem: ¢ = o0, p =0...
» What if 7(e) not decreasing? (Cavity/guided BGK modes?)
» Extension to time-dependent problems:

> Quasi-neutral models:
fluid (kinetic) ions + “Boltzmannian” electrons
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: :

Open problems

» Representation formula for A\ = \[M; p., ¢in)
(at least in Maxwellian case?)

v

Asymptotics of A\ as M — o0? as ¢, — o0?

v

Asymptotics of p and ¢?

Limiting problem: ¢ = o0, p =0...

What if v(e) not decreasing? (Cavity/guided BGK modes?)
Extension to time-dependent problems:

» Quasi-neutral models:
fluid (kinetic) ions + “Boltzmannian” electrons
» Full Vlasov—Poisson. .. Vlasov—Maxwell. ..
Mere existence of solutions unknown.

vy

v

Realistic modelling of lightning???

o
o)
I
i
it
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