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Lu = Oyu — aij(t)DiDju = f, (1)

a'J are measurable real valued functions of ¢t sat-

isfying o = o’ and

v|€]® < a¥g€; <vThE?, € EeR™

v = const > 0. We use the space Ly (2 x R)
with the norm

pa= ([, ( [ 15 o) )"

N.V. Krylov (2001): for f € Ly q(R" x R), 1 <

p,q < oo, equation (1) has a unique solution s.t.

[0¢ullp,q + 2 | DiDjullp,g < Cllfllp,q -
1)
He proved also coercive estimates for u
in spaces LI(R; C21T%), « € (0,1).



The Dirichlet BVP in the half-space
RY = {x = (2',zp) € R" I xp > 0}.

Now equation (1) is satisfied for z,, > 0 and u =
O for =, = 0. The weighted coercive estimate

lzhullp,g + > llehDiDjullpg < Cllah fllpg, (2)
ij
was proved by Krylov (2001), with 1 < p,q <
and pe€ (1 —1/p,2 —1/p).

In

Viadimir Kozlov and Alexander Nazarov, The
Dirichlet problem for non-divergence parabolic
equations with discontinuous in time coeffi-
cients, Math. Nachr. 282 (2009), No. 9, 1220
1241.

estimate (2) is proved for solutions of the Dirich-

let problem to (1) for the same p,q and

—1l/p<pu<2-1/p. (3)



Remarks In the paper [2007] Krylov and Kim
proved, in particular, estimate (2) in the half-
space for u =0 and p=4q. In

D. Kim, Parabolic Equations with Partially BMO
Coefficients and Boundary Value Problems in
Sobolev Spaces with Mixed Norms, Potential
Anal., published on line in 2009.

estimate (2) is proved for u = 0 and arbitrary
1 <p,qg<oo.



Dirichlet problem in bounded do-
main <2

Let Q@ = Q2 x R. We introduce the spaces L, , (,)(Q) with

the norm

1 1p,q, ¢y = 11(d(@))* flIp.g:

where c/l\(:zz) is the distance from x € Q2 to 0%2.

We consider the boundary value problem

Oru — a' (z, t)D;Dju + b'(z,t)Dyu = f(z,t) in Q;
’U,|8/Q = 0;

the matrix (a¥) € C(Q2 — L>=(0,T)) is symmetric and uni-
formly elliptic. Here 0@ is the boundary of Q.
K.-N.,2009:Let 92 € CY° with § € [0,1], 1 < p,q < oo,
and let 1 —§ —% <pu<?2-— %. Then, for b’ in a suitable
class and for any f € L,,,)(@Q), the above problem has
a unique solution in L,,y(Q). Moreover, this solution
satisfies

1Bl p g, (u) T Z 1D:Djully g,y < Cllllp.g, ()
i

Remarks. For p = g and § = 0 this theorem
was proved by Kim and Krylov (2004).



Coercive estimates for the heat equation
with constant coefficients in a wedge.
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We use the notation (2/,2") € R", where 2’ € R
and 2’/ € R" ™, Let K be a cone in R™ such
that the boundary 0K\ O is of class C2. We put
K=KxR*"™_ ForueRand 1 <p,g< oo we

introduce spaces Ly g, = Lpq,u(K X R) with the
norm

[ullp,q,n = (/R (/,C|x/|up|u($,t)|pdx>Q/pdt) 1/q

Let also

QF(to) = (Br(0) NK) x (to — R, to)
where Bgr(xg) is the ball |z — xg| < R.



By V(QE (o)) we denote the set of functions u
with finite norm

ully o =, 3U0, , 1T ll2sr@)nc)

Tl Dzull 2K (10)))

to
+ /tO_RQ 1 Deuts Dllw-1(Bg0)n1c)dt:

We define the critical exponent for the operator
L and the wedge K as the supremum of all A\
such that
[\
u@ Dl <C(5) s 0l @)
(v.T)EQf (t0)
for (z,t) € Qg/z(to). This inequality must be

satisfied for all tg, R > 0 and u € V(QE(¢o))
subject to

Lu=0 in QK(tp) (5)
and
u=0 on QK (tn) NIK x R.

We shall denote this critical exponent by ..
Since A = 0 satisfies (4) we conclude that
Ae > 0. Below we give some estimates for Ac
for various geometries of K.



Estimates for the critical expo-
nent

1. Using weighted energy estimates one can
show that

2—m

—+ vAp + (m — 2)2/4,

where Ap is the first positive eigenvalue of the
Dirichlet-Laplacian on K nS™m1,

Ac 2

2. Using barrier technique one can show that

a) the critical exponent is positive provided the
complement of K is non-empty:;

b) if K is contained in a half-space then A, > 1.

3). If L =0;— A then

2_
he =" 4 Ap + (m - 2)%/4




Theorem Let \. be the critical exponent. Then
for

n
— — A
u—l—p 5 >

the following estimate holds:

|ut|lp,q. + 1IVVUllp,g.n < Cllfllpg,u



For § > 0 we define Ky = {2/ € K
dist(a:’,(‘)K) > 5|ZIZ/|} and K5 = K5 x R.

The next statement can be found (up to scaling)
in [LSU]J.

Proposition 1. (i)Letu € W21(Qpr(zg,to)) solve
the equation Lu =0 in Qr(xg,tg) . Then

C
[Du| < —  sup |u| in Qpr/>(xo,to)-
R Qp(xo,to) /

(ii) For sufficiently small 6 > 0, zp € K \ K5 and
lzg| = 1 the following assertion is valid. Let
u € W2 (Qz(a;o,to)) solve the equation Lu = 0
in QR (xo,tp), where R < 1/2, and let u(z,t) =0
for x € OK. Then

C .
[Du| < —  sup |y in QE/Q(on,to)-

Q7 (zo.to)

Here C' depends only on v and K and §.

We used the notations

Qr(xg,to) = Br(zg) x (tg — R?,t0)

and

QY (o, t0) = (Br(zo) NK) x (to — R?,10).



Iterating the inequality from Proposition (i) we
arrive at

Lemma 1. Let u € Wg’l(QR(xo,tO)) solve the
equation Lu =0 in Qgr(xzg,tg). Then

C
Dol < S sup Jul  in Qpya(eoto)
Rl Qr(zo,to) /

Next Lemma is actually proved in [KN].
Lemma 2. For sufficiently small § > 0, zp €
K\ K, z§ € R*™™™ and |z| = 1 the following
assertion is valid. Letu € WQQ’I(Q}E(xO, to)) solve
the equation Lu = 0 in Q}'%'(:co,to), where R <
1/2, and let u(x,t) = 0 for x € OK. For |a] > 2
and arbitrary small € > 0O

d(z)!=2+8| Do <

sup  |u| , (6)

2—¢
kR Q7 (z0.to)

in QE/8|Q|(9507750)' where C' is a positive constant

depending on v, |a|, K, § and e.



Green’s function in £ x R

Let us consider (1) in the whole space. Using
the Fourier transform with respect to x we ob-
tain:
t
w@,)= [ [T yits)fys) ds, (7)
—oo R

where [ is the Green function of the operator
Lo given by

gD
(ot s) — det (fs A(Tﬂ)d7>
(4)
(s A@adr) " @ =), (- )
<o - - )

for ¢t > s and 0 otherwise. Here by A(t) is de-
noted the matrix {a;;(t)}. The above represen-
tation implies:

C
k o /8 . < k7a7/8
‘8,5 Da:Dy I_(xa Y, t, S) — (t . S)(n+2k+|a|+|ﬁ|)/2
12
coo(2E=). ®
t—s

where k£ < 1 and « and (@ are arbitrary indexes.
Here o is a positive constant depending on v.



We denote by Mg = M(x,y;t,s) Green's func-
tion to the homogeneous Dirichlet problem of
(1), in the half-space. Clearly, INg(x,y;t,s) <
(x,y;t,s) and therefore

C ole —yl?\ .
N Ly t,s) < exp | — in  x R.
(9)
We shall use the notations
| 2/| /|
R — , R s
T+ vE=s T W+ VE—s

and
L _d@ + Vs d@) (Y + V= s)
= —

) 7“y )
|2/ |/t — s 1y |/t — s

where d(x) is the distance from z to the bound-
ary OK.



Proposition 2. The following inequality

o1z — y|?
t— s >
(10)
holds for x,y € K and s < t. Here o1 Is a pos-
itive constant depending only on the ellipticity
constant v and C may depend on v and \.

Fic(z,y;t,8)| < CRARY(t—s) "2 exp (_

The proof of this proposition and the next the-
orem essentially uses the above local estimates
and the definition of the critical exponent.



Theorem 1. Let |of, |B] £ 2. Forx,y € K, 0 <
s < t the following estimate is valid

|DO‘DBI_,C(38 y, t;8)| < C’Rw |Q|R>\ 5] T Ty

n+|al+|8] — y|?
(1 — 5~ exp(—"l'” y'>, (11)

t— s
where o1 is a positive constant depending on v, ¢
is an arbitrary small positive number and C' may
depend on v, o, B and e. If |a| <1 (or |B] < 1)
then the factor v ¢ (r,¢) must be removed from
the right-hand side respectively.



