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Non-autonomous integrals (1)

I Problem: regularity results for local minimizers of functionals

J[w ] :=

∫
Ω

F (·,∇w) dx (0.1)

with a function F : Ω× RnN → [0,∞) and a domain Ω ⊂ Rn.

I Anisotropic growth conditions: for all Z ,Q ∈ RnN and all
x ∈ Ω we have

C1 |Z |p − c1 ≤ F (x ,Z ) ≤ C2 |Z |q + c2

with constantes C1,C2 > 0, c1, c2 ≥ 0.

I If p = q there is no problem to extend the regularity
statements from the autonomous case to the situation with
x-dependence.
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Non-autonomous integrals (2)

I Before Esposito, Leonetti und Mingione found rather
surprising counterexamples (see [ELM]) most authors ignored
x-dependence for a technical simplification of their proofs.

I We assume (p, q)-ellipticity:

λ(1+|Z |2)
p−2

2 |Q|2 ≤ D2
PF (x ,Z )(Q,Q) ≤ Λ(1+|Z |2)

q−2
2 |Q|2

(A1)

for all Z ,Q ∈ RnN and all x ∈ Ω with positive constants λ, Λ
and exponents 1 < p ≤ q < ∞.

I We suppose for all Z ∈ RnN and all x ∈ Ω

|∂γDPF (x ,Z )| ≤ Λ2(1 + |Z |2)
q−1

2 (0.2)

with Λ2 > 0 and γ ∈ {1, ..., n}.
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Gap between both cases (1)

I In [ELM] Esposito, Leonetti and Mingione examine the
Lavrentiev gap functional, which is defined as

L := inf
u0+W 1,q

0 (B,RN)
J − inf

u0+W 1,p
0 (B,RN)

J

on a ball B b Ω with boundary data u0 ∈ W 1,p(B, RN).

I The results of the studies from [ELM] provide the sharpness of
the bound

q < p
n + α

n

for higher integrability of solutions (assuming that DPF (x ,Z )
is α-Hölder continuous with respect to x)

I Without this condition they have examples for
Lavrentiev-phenomenon.
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Gap between both cases (2)

I Under the condition

q < p
n + 1

n
(0.3)

Bildhauer and Fuchs [BF1] prove full C 1,α-regularity for N = 1
or n = 2 and partial regularity in the general vector case.

I This statement is in accordance with the results of [ELM].

I Under several structure conditions Bildhauer and Fuchs can
improve the last result to full regularity (see [BF1]).

I Without x-dependence we know from [BF2] that the better
bound

q < p
n + 2

n
(A2)

is sufficient for regularity.
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Two problems

I If one have a look at the proof in [BF1], one see two main
differences to the case of autonomous.

I The first obstacle is that the standard-regularization uδ does
not converge against the minimum u without (0.3). Thereby
uδ is defined as the unique minimizer of∫

B

[
F (·,∇w) + δ

(
1 + |∇w |2

)eq
2

]
dx

in (u)ε + W 1,eq
0 (B, RN) with q̃ > q and B b Ω.

I The second obstacle in the proof in [BF1] is estimating the
term∫

η2∂γDPF (·,∇u) : ∂γ∇u dx .
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Solving the first one (1)

I To solve the first problem we work with a regularization from
below: we need a function FM such that

FM(x ,Z ) = F (x ,Z ) if |Z | ≤ M

FM(x ,Z ) ≤ F (x ,Z ).

I Such a regularization from below is based on a construction
from [CGM].

I We have to extend all growth conditions assumed for F
uniformly in M to FM and show isotropic growth
(i.e. FM is p-elliptic).

I A necessary assumption for the construction of FM is

F (x ,P) = g(x , |P|). (A3)
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Solving the first one (2)

I We define the regularization uM as the unique minimizer of

JM [w ] =

∫
B

FM(·,∇w) dx

in u + W 1,p
0 (B, RN) with a ball B b Ω.

I This is the minimizer of an isotropic problem and so we have
several regularity properties of uM .
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Solving the second one (1)

I To handle to critical integral we suppose for all P,Z ∈ RnN∣∣∂γD2
PF (x ,Z )(P,Z )

∣∣ ≤ Λ3

∣∣D2
PF (x ,Z )(P,Z )

∣∣ (1+|Z |2)
ε
2

+Λ3(1 + |Z |2)
p+q−2

4 |P|

for 0 ≤ ε � 1.

I On account of (A3) this means

|∂γg ′′(x , t)| ≤ Λ4

[
g ′′(x , t)(1 + t2)

ε
2 + (1 + t2)

p+q
4
−1

]
(A4)

I Example : for f : Ω → (1,∞) consider∫
Ω

(
1 + |∇w |2

) f (x)
2 dx .
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Solving the second one (2)

I To extend our growth conditions to FM we have to suppose

|∂2
γg ′′(x , t)| ≤ Λ5(1 + t2)

q−2
2 (A5)

as a last assumption.

I This is in accordance with

g ′′(x , t) ≤ Λ5(1 + t2)
q−2

2 .
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Theorems (1)

If we assume (A1)-(A5) we have the following result for local
minimizers of (0.1):

I Full regularity if n = 2,

I full regularity if N = 1,

I partial regularity in general vector case.
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Theorems (2)
To achieve full regularity in the general vector case we need further
assumptions:

I Suppose for all P,Q ∈ RnN , all x ∈ Ω with α ∈ (0, 1)∣∣D2F (x ,P)− D2F (x ,Q)
∣∣ ≤ c(1+|P|2+|Q|2)

q−2−α
2 |P − Q|α .

(A6)

This condition is also needed in the isotropic situation.

I One of the following two conditions (only for n ≥ 5)

(i) q < p
n − 1

n − 2
(A7)

(ii) g ′(x , t) ≤ cg ′′(x , t)(1+t2)
ω
2 (A8)

for ω <

(
pn

n − 2
− q

)
+ 1.
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Locally bounded minimizers (1)

I If we assume u ∈ L∞loc(Ω, RN) we have dimensionless
conditions between p and q: In the autonomous situation from
[BF2]

q < p + 2, (A9)

whereas the non-autonomous situation requires the much
more restrictive bound (see [BF1])

q < p + 1.

I How to close this gap?
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Locally bounded minimizers (2)

I We get full regularity if we suppose (A1), (A3)-(A6), (A9)
and

g ′(x , t) ≤ cg ′′(x , t)(1 + t2)
ω
2

for ω < (p + 2− q) + 1.
(A10)

I It is not possible to extend (A10) to gM (note
FM(x ,Z ) = gM(x , |Z |)) uniformly in M.

I Therefore we use the M-regularization to show
∇u ∈ Lp+2

loc (Ω, RnN) which is possible without (A10).

I Then we have a W 1,q
loc -minimizer and thereby the

δ-regularization converge.

I Use this to show local boundedness of ∇u.
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Overview

known results new results

q < p n+1
n q < p n+2

n
F (x ,Z ) = g(x , |Z |), Dxg

′′ ≤ ...
• FR for n = 2, N = 1 • FR for n = 2, N = 1

or GV with SC or GV with SC
• PR in GV [BF1], 2005 • PR in GV

q < p + 1, u ∈ L∞loc(Ω, RN) q < p + 2, u ∈ L∞loc(Ω, RN)
F (x ,Z ) = g(x , |Z |) , Dxg

′′ ≤ ...

g ′(x , t) ≤ c(1 + t2)
ω
2 g ′′(x , t)

• FR for N = 1 or GV with SC • FR for N = 1 or GV with SC
[BF1], 2005
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Nonlinear Stokes problem (1)

I Minimizing functionals of the form

J̃[v ] :=

∫
Ω
{H(ε(v))− f · v} dx , ε(v) =

1

2
(∇v +∇vT )

subject to the constraint div(v) = 0.
I Applications: mathematical fluid mechanics.
I Minimizers correspond to the following system of partial

differential equations{
div {∇H(ε(v))} = ∇π − f on Ω,

div v = 0 on Ω,
(0.2)

I The solution v : Ω → Rn is the velocity field and π : Ω → R is
the pressure.

I Here Ω denotes a domain in Rn (n ∈ {2, 3}), f : Ω → Rn is a
system of volume forces.



New regularity thereoms for nonautonomous anisotropic variational problems

Nonlinear Stokes problem (2)

Examples for the density H

I Classical Stokes problem: H(ε) = |ε|2

I Power law fluids: H(ε) = (1 + |ε|2)
p
2 , 1 < p < ∞

I Non-Newtanion fluids: H has anisotropic behaviour in ε

I Especialy Electrorheological fluids: H(ε) = (1 + |ε|2)
p(x)

2

Assume that H satisfies the conditions (A1)-(A5) and consider
minimizers of

J̃[w ] :=

∫
Ω
{H(·, ε(w))− f · w} dx , div(w) = 0.

The results about full regularity for n = 2 and partial regularity in
the general vector case extend to this situation.
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