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© Existence/Nonexistence: Nonnegative solutions for semilinear
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© Uniqueness: Unigue minimizer for random functional with
double-well structure.

© Review of random homogenization

@ Random functionals
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Setiing
PDEs with random coefficients

General form:
F(D?u,Du,u,x,w) =0 (= du),

where the random function

F Ry RITxRxRxQ—RM

sym

(here m = 1) satisfies deterministic bounds/structural conditions.
(E.g. continuous, uniformly elliptic etc.)
Probability measure P on all equations with these bounds
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PDEs with random coefficients

General form:
F(D?u,Du,u,x,w) =0 (= du),

where the random function

F Ry RITxRxRxQ—RM

sym

(here m = 1) satisfies deterministic bounds/structural conditions.
(E.g. continuous, uniformly elliptic etc.)

Probability measure P on all equations with these bounds

Example:

F(M, &, u,x,w) = tr(M) + f(x, u,w) F(M, &, u, x,w) = a(x,w)tr(M)

Usually: Law translation invariant and ergodic, so "almost sure"
results for large-scale behaviour.
Homogenization: Behaviour of solns. for F(D?u, Du, u, x/e,w) = 0,

on bounded domain as ¢ — 0.
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Setiing
Random Functionals

Find minimizer in a suitable function space (e.g. H'?(D)) of
u(x) — / F(Du, u, x,w)dx
D
Minimizer will be random function.

D = R": Minimizer under compact perturbations.
@ Existence
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Setiing
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Find minimizer in a suitable function space (e.g. H'?(D)) of
u(x) — / F(Du, u, x,w)dx
D

Minimizer will be random function.
D = R": Minimizer under compact perturbations.

@ Existence
@ Uniqueness
@ Homogenization: [, F(Du,u, x /e, w)dx
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Minimisers of random of energy (with E. Orlandi)

Area(X NA) + / f(X)dX where X = OE.
ANNE

Fuw) = [ (51vut0? + 2wueo) + 2 h (2.) u) ) ox

h bounded random field, short correlation length
W double-well potential, two minimizers +1.

L,

e Idea: u¢ minimiser = u¢ — £1onRY\ ¥ as ¢ — 0, F. converges to
(possibly anisotropic) area functional.
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€

h bounded random field, short correlation length

W double-well potential, two minimizers +1.

e Idea: u¢ minimiser = u¢ — +1 onRY\ ¥ as ¢ — 0, F, converges to
(possibly anisotropic) area functional. a. ~ log(1/e¢), d > 3 or O(1)
and periodic (D-Lucia-Novaga)

e a. = O(1), i.e. d2: Unique transl. cov. minimizer (under comp.
pert.), effect of b.c. lost as as A ' RY
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Minimisers of random of energy (with E. Orlandi)

F.(u) = /A qu(xn2 + %W(u(x)) +2n(Z,0) u(X)> dx

h bounded random field, short correlation length

W double-well potential, two minimizers +1.

e Idea: u¢ minimiser = u¢ — +1 on RY \ X as € — 0, F. converges to
(possibly anisotropic) area functional. «. ~ log(1/¢), d > 3 or O(1)
and periodic (D-Lucia-Novaga)

e a. = O(1), i.e. d2 : Unique transl. cov. minimizer (under comp.
pert.), effect of b.c. lost as as A ' RY

e Replace gradient term by nonlocal term

jm(x) — m(y)[? / / Im( X) mo(y)/?
Ex(m,m :/ dxd—+2 dx
Al 0) AxA [x — y|d+2s Rd\/\ =y

boundary cond. mg

d=2,s¢€ (%, Nord=1, sc [%,1) : Unique minimiser (comp. pert.)
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The functional

Randomness: (g(z,w)),cz4, d space dimension family of uniformly
bounded i.i.d. r.v. with mean zero and variance 1 and
Lebesgue-continuous and symmetric distribution.

g(x,w) = Z g(Z,w)1(Z+[_%7%1d)m/\(X)v

zezd
Energy:
K(v,w.\)= [ dxd ‘ 3= UIIE . [ W (0)ax— [ el w)vix)ax
T JAxa Y x—yares |d+2s ’ .
Boundary Cost:

i), (o) =2 fLax [ oyl

G(v,w,N) = K(v,w,\) + W((v,\)(vp,\°))
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Minimizer under compact perturbation

u : R — R Minimizer under compact perturbations: For any
compact subdomain U C we have

GY(u,w,U) < 00, as.

and
G'(u,w,U) < G"(v,w,U) as.

for any v which coincides with uin R9 \ U.
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Minimizer under compact perturbation

u : R — R Minimizer under compact perturbations: For any
compact subdomain U C we have

GY(u,w,U) < 00, as.

and
G'(u,w,U) < G"(v,w,U) as.

for any v which coincides with uin R9 \ U.
u: A — Ris vO-minimizer if it minimizes G"% among all functions which

coincide with v on RY \ A,
These exist by standard arguments.
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Minimizers are ordered

u min. of GY(-,A), v min. of GY(-,A), then
sifu=vonA®=u<vonAorv<uonA

e if U < v on open subset of A°, then u < v on A.

In general no uniqueness even on compact domains!

Idea:
G(uVv v,AN)+ G(uAv,N) < G(u,N) + G(v,N).
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Extremal K-minimizers

On compact domain with b.c. in general no uniqueness, but there
exists maximal and minimal minimizer.

Consider now constant b.c. =K for K > 1 and let u=/ pe the
extremal min. with b.c. +K on A, := (—n, n)“.

Define:
:I:K( :|:,K7/\n(

u=" (X, w) == lim u

n—oo

Pointwise increasing bounded sequence, converges in better function
spaces, consequence:

X,w)

u*X(x,w) are min. under compact perturbations!

Moreover: Translation covariant
i.e. utK(x,w) and urK(y,w) are the same in law.
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Extremal ergodic states

WANTED: Extremal min. under compact pert. on R”. If they are
unique, all min. are equal.

Consequence of min. property of u*X and translation covariance:
uniform bounds on ||u*¥||,, which do not depend on K.

Consequence:
uE(x,w) = lim K (x,w)
K— oo
well defined, uniformly bounded and min. under compact pert.

Show: ut = u~ a.s.
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Extremal ergodic states

WANTED: Extremal min. under compact pert. on R”. If they are
unique, all min. are equal.

Consequence of min. property of u*X and translation covariance:
uniform bounds on ||u*¥||,, which do not depend on K.

Consequence:
uE(x,w) = lim K (x,w)
K— oo
well defined, uniformly bounded and min. under compact pert.
Show: ut = u~ a.s.

Now adapt ideas of Aizenman/Wehr
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Bound on difference of optimal energies

2
G (vt,A)=GY (v_,AN|<C N if s € (0
Note: |An| ~ nd.

Idea: Interpolate on the boundary between u™ and u~—, estimate "cost"
by estimating singular integrals.
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Central Limit Theorem: Set-up
Note: Minimal energy and minimizer depend in complicated way on all
random variables g(z,w).
o-algebras:
o Bhi=0({9(2),z € N\, z < i}) where < refers to lexicographic
ordering in Z9.
o By, = 0 ({9(2), 2 € An})
e 5(0) = o (9(0))
Consider
Fa(w) = E[{G(V'(w),w,An) — GV (w),w /\n)} IBA,]

= Z (E[Fn|Bn /] - E[Fn‘Bn, 1] Z Yn”-_

i€z9nAn i€ZINAn

Martingale Difference: CLT = F,, ~ /|A|N(0, D?) where
D? = E [(E[FB(0)])]
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Central Limit Theorem: Result

Deterministic bound:

T if se($,1)
|Fal < C n=2s  ifs€(0,3)
n'logn ifs=7}

Fluctuations: n9/2 unless D? = 0.

Contradiction if d =2, s € (3,1)ord =1, s € [§,1) unless D?> = 0.
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"derivative" w.r.t. randomness

r—>/ w(0),w®)dx
is nondecreasing.

IG(v*(w),w, N) _ _/ vE(x, w)dx.
dw(0) (—1/2,1/2) ’

Absolutely cont. random variables!
Heuristic: Suppose u(w) minimises F(u,w).

8F(U(w),w)| _ OF(u,w)| n OF(u,w)|

O (u(w),w) ou  u@w) 0w U)W
OF(u,w)
T| (u(w),w

Glu,w)=...— /Ag(x,w)u(x)dx
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Central Limit Theorem: Conclusion

0 = 07 = E [(EFIBO?] = E [((0))]
so 0 = f(s) a.s.

f'(s) = 8G(v;£¢(u33w,A)|w(o)_s_6G(va—£¢(u33w,A)|w(o)_s

— /( . (vH(x,w) — v~ (x,w)) dx.

f(s) = 0 =(mon.) f'(s) =0 a.s. = (ordered) v = v~ a.s.
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Nonlinear Random Homogemization

UHFE(U)Z/D(a(g,w) Vu(x)[% + F(x)u(x)) ox.

O<c<alxw)<C
D compact, = unique minimizer u, in Hg’q(D).
u. — Ug (weakly) as eto0.

Is there a homogenized deterministic functional
U / (E[VU(X)IP + FO)u(x)) dx
D
such that yy is its unique minimizer?

More general integrand: f(P, x,w) with bounds
c|P|? < f(P,x,w) < C|P|9

Important Condition for hom.: Fast decay of correlations in space!
E.g. Dal Maso-Modica: Ex. M > 0 s.t. independent for |x — y|> M.
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[-convergence

Convergence F. — F such that minimizers of F. converge to a
minimizer of F.

Suppose F., F act on metric space (X, d).
F. — F (d-T') if and only if

@ For any sequence u. — u (w.r.t d): F(u) < liminf F.(u)
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[-convergence

Convergence F. — F such that minimizers of F. converge to a

minimizer of F.

Suppose F., F act on metric space (X, d).

F. — F (d-T') if and only if

@ For any sequence u. — u (w.r.t d): F(u) < liminf F.(uc)

© For any u € X there exists sequence v, — u (w.r.t. d) s.t.
lim Fe(ve) = F(u).

Makes space of functionals a compact metric space
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Homogenized Functional

In the framework of Dal Maso-Modica: If integrand translation invariant
and under independence condition (ergodicity not assumed)

F.(u, D):/ f(Du, x/e,w)dx — (H"9 —T) Fy(u, D):/ fo(Du)dx
D D
with

f(P) = lim (2n)~9E

n—oo

min / f(Du + P, X,w)dX]
(_nvn)d

ueH) U((—n,n)d)
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Homogenized Functional

In the framework of Dal Maso-Modica: If integrand translation invariant
and under independence condition (ergodicity not assumed)

F.(u, D):/ f(Du, x/e,w)dx — (H"9 —T) Fy(u, D):/ fo(Du)dx
D D
with

f(P) = lim (2n)~9E

n—oo

min / f(Du + P, X,w)dX]
(_nvn)d

ueH) U((—n,n)d)

Necessary condition: u linear function

Additional assumption: Ergodicity w.r.t. spatial translations = no
expectation necessary.

"Corrector"
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Subadditive ergodic theorem

(2kn)™  min f(Du + P, x,w)dx
(—kn,kn)d

ueH)9((~n,n)d

<n? 3 (2k)"? min f(Du + P, x 4 z,w)dx
(—k,k)d

B ze(—n,n)9N(27Z)9) ueHy ((—k.k)?

= Convergence a.s.
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Kingman’s subadditive ergodic theorem

(Dal Maso-Modica)
Let m(A, w) be a random fucntion on bounded subsets of RY which is

e subadditive, i.e.
A=A = mAw) <> m(Ag)as.
k K
e translation invariant: m(z + A,w) = m(A,w)
Then there ex. p(w) s.t. for almost all w
. 1
n||_)moo mm(na, CU) = QO(OJ)

Ergodic: ¢ is constant
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Nonlinear Random Homogemization Elliptic 2nd order: Caffarelli-Souganidis-Wang

Problem

F(D?u,x/e,w)=0 onD
u=g onoD

Heuristic Ansatz:
Ue(X,w) = Up(X) + 2uy(x, x/€) + ...
uq corrector, treat x /e as independent variable y
F(DZuo(x) + D7us (X, y),y,w) =0

Corrector equation For any Q € Hg;,,,d, find (v, F) such that

F(Q+ D?v(y),y,w) = F(Q) on RY, (”Z)ao as |y| — oo
NIy 1y

nonlin.ev.

@ No proof of existence
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Nonlinear Random Homogemization Elliptic 2nd order: Caffarelli-Souganidis-Wang

Problem

F(D?u,x/e,w)=0 onD
u=g onoD

Heuristic Ansatz:
Ue(X,w) = Up(X) + 2uy(x, x/€) + ...
uq corrector, treat x /e as independent variable y
F(DZuo(x) + D7us (X, y),y,w) =0

Corrector equation For any Q € Rg;,,,d, find (v, F) such that
F(Q+ D?v(y),y,w) = F(Q) on RY, (yz) —0 as|y| = oo
—_— ly|

nonlin.ev.

@ No proof of existence
@ In some cases (first order) nonexistence shown

Nicolas Dirr (Cardiff University ) Random Coefficients 20/25



Nonlinear Random Homogemization Elliptic 2nd order: Caffarelli-Souganidis-Wang

Do not need

F(Q+ D?v(y),y,w) = F(Q) on RY, (y2) -0 as|y| = oo

nonlin.ev.

Need only for any Q unique F(Q) such that if some v.(x,w) solves

F(D?v.,y/e,w) = F(Q) in B
Ve = (X, Qx) on 0B

then ||ve(x) — (x, QX) ||~ 8,y — O.
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Elliptic 2nd order: Caffarelli-Souganidis-Wang
Obstacle Problem

Rescale

F(D?w.,y,w) = F(Q) inB; .
W, = (x,Qx) ondBy .

and compare with

F(Dzue,y/e,w) = hinB; .
U. = (x,Qx) on 9By,
Ue > (Xa QX)in B‘l/e
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Elliptic 2nd order: Caffarelli-Souganidis-Wang
Obstacle Problem

Rescale

F(D2W67y7w) = I_:(Q) inB‘I/e
W, = (x,Qx) ondBy .

and compare with

F(D2u6,y/e,w) = hinB; .
U. = (x,Qx) on 9By,
Ue > (Xa QX)in B‘l/e

Contact set |{x : u.(x,w) = (x, Qx)}| Satisfies conditions for
subadditive ergodic theorem, so measure of contact set m(h) det.
m(h) = 0 : Soln. of free and obstacle problem close

m(h) > 0 : Soln. of obstacle problem and (x, Qx) close (strict ell.!)
Desired F(Q) : Choose sup{h: m(h) = 0}.
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Elliptic 2nd order: Caffarelli-Souganidis-Wang
Back to interfaces

e Curve oscillates sublinearly in moving frame (kinetic scaling
t=e 1T, r=¢"x)

S—CX

e1

e positive average speed of subsolutions
Idea: Fastest plane below and slowest plane above graph (in e~ '-box)
have same average speed, which is deterministic (Obstacles i.i.d.)
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Elliptic 2nd order: Caffarelli-Souganidis-Wang
Back to interfaces

e Curve oscillates sublinearly in moving frame (kinetic scaling
t=e 1T, r=¢"x)

S—CX

e1

e positive average speed of subsolutions
Idea: Fastest plane below and slowest plane above graph (in e~ '-box)
have same average speed, which is deterministic (Obstacles i.i.d.)

O v(y,mw) = eAv(y,r,w)+f(e 'y, e vy, Tw),w) +F
v(x,0) = 0
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Conclusion
Techniques

@ Large Deviations

Nicolas Dirr (Cardiff University ) Random Coefficients 24/25



Conclusion
Techniques

@ Large Deviations
@ Borel-Cantelli

Nicolas Dirr (Cardiff University ) Random Coefficients 24/25



Conclusion
Techniques

@ Large Deviations
@ Borel-Cantelli
@ Percolation

Nicolas Dirr (Cardiff University ) Random Coefficients 24/25



Conclusion
Techniques

@ Large Deviations
@ Borel-Cantelli

@ Percolation

@ Martingale CLT

Nicolas Dirr (Cardiff University ) Random Coefficients 24/25



Conclusion
Techniques

Large Deviations
Borel-Cantelli

Percolation

Martingale CLT

Subadditive ergodic theorem

© 6 ¢ ¢ ¢
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Shkisen
Open Problems

@ Homogenisation for Random Obstacel Model/ randomly forced
MCF
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Shkisen
Open Problems

@ Homogenisation for Random Obstacel Model/ randomly forced
MCF

@ [-limit for random functionals with double well potential in d > 3
@ Homogenization for degenerate elliptic second-order PDEs

@ Homogenization for Hamilton-Jacobi equations
H(Du, x/e,w) + u = 0if H is not convex in P.
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