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Some notes about quasi-incompressible fluids
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Models for liquids (rather than for gases) where mass density variation can be neglected but
propagation of pressure waves (in contrast to ideally incompressible Navier-Stokes equations) with
a dispersion are presented. Advantages may be that the pressure can be well determined even
pointwise everywhere (including the boundary). One variant is governed by the system
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where v is the velocity, ⇡ pressure, K is the elastic bulk modulus (in the physical units Pa=J/m3)
and H is a “hyper” bulk modulus (in the physical units Pa/m2=J/m5). The bulk force %

2(div v) v
was invented by R. Temam to fit the expected energetics, cf. [7]. This model is usually considered
rather as an artificial regularization (or numerical stabilization) of the incompressible model only,
possibly with H = 1 or ignoring the force %

2(div v) v, cf. e.g. [1, 2] or [4]. Yet, it has a good
physical relevancy by itself as the modulus K with the mass density % determines the speed of
P- (=pressure) waves for low-frequency range, while H < 1 leads to a micro-inertia like [3] and
facilitates a normal dispersion for higher frequencies leading to a lower speed of P-waves.
Existence of a weak solution and certain regularity as well as asymptotics towards the incompressible
Navier-Stokes model for K,H ! 1 is at disposal in this model.
Various modifications of the basic model (1) will also be presented. For example, K = K(⇡) leading
to a pressure-dependent speed of P-waves, or enhancement towards anomalous dispersion, or a
coupling with a phase field � governed by the Cahn-Hilliard equation (like e.g. [5] for incompressible
case) giving rise to a Korteweg-type stress and then K = K(�) leading to a phase-dependent
P-wave speed in a two-phase flow or, e.g., to a salinity-dependent P-wave speed if � is concentration
of salt in seawater.
Other (likely physical relevant) modifications to be discussed are replacement of the Temam’s force by
a Bernoulli-type pressure, or making also the second equation in (1) parabolic 1
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as in [6], or possibly also the fully convective variant, i.e.
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