Optimal convergence rates in stochastic homogenization of nonlinear uniformly elliptic PDEs

<u>Julian Fischer⁽¹⁾</u>, and Stefan Neukamm⁽²⁾

(1) IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria(2) TU Dresden, Dresden, Germany

e-mail: julian.fischer@ist.ac.at

We derive optimal-order homogenization rates for random nonlinear elliptic PDEs with monotone nonlinearity in the uniformly elliptic case. More precisely, for a random monotone operator on \mathbb{R}^d with stationary law (i. e. spatially homogeneous statistics) and fast decay of correlations on scales larger than the microscale $\varepsilon > 0$, we establish homogenization error estimates of the order ε in case $d \geq 3$, respectively of the order $\varepsilon |\log \varepsilon|^{1/2}$ in case d = 2. Previous results in nonlinear stochastic homogenization have been limited to a small algebraic rate of convergence ε^{δ} . We also establish error estimates for the approximation of the homogenized operator by the method of representative volumes of the order $(L/\varepsilon)^{-d/2}$ for a representative volume of size L. Our results also hold in the case of systems for which a (small-scale) $C^{1,\alpha}$ regularity theory is available.