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Introduction

Based on the paper:
V. Iftimie, R. Purice: Eigenfunctions decay for magnetic
pseudodifferential operators, preprint arXiv:1005.1743, 10 pp.
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The Framework

We work in Rd (with d ≥ 2) and consider:

A magnetic field B described by a closed 2-form

B =
1

2

∑
1≤j ,k≤d

Bjk dxj ∧ dxk , dB = 0, Bjk = −Bkj .

A classic Hamiltonian defined by a real function h ∈ Sm(Rd),
i.e.:

h ∈ C∞(Rd × Rd)

and there exist m ∈ R such that ∀α ∈ Nd , ∀β ∈ Nd :

sup
(x ,ξ)∈Rd×Rd

< ξ >−m+|β|
∣∣∣(∂αx ∂βξ a

)
(x , ξ)

∣∣∣ <∞.
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The Framework

Hypothesis B

Bjk ∈ BC∞(Rd) :=
{

f ∈ C∞(Rd) | ∂αf ∈ L∞(Rd)∀α ∈ Nd
}
.

Hypothesis h

For m > 0 the symbol a ∈ Sm(Rd) is elliptic, i.e. ∃C > 0,∃R > 0
such that

|a(x , ξ)| ≥ C < ξ >m ∀(x , ξ) ∈ Rd × Rd with |ξ| ≥ R.
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The Framework

We can now use the magnetic covariant quantization to define the
quantum Hamiltonian associated to h and B.

Hypothesis A

We shall consider a smooth vector potential defining our magnetic
field:

A =
∑

1≤j≤d

Aj dxj , Aj ∈ C∞pol(Rd), B = dA

with C∞pol(Rd) the space of infinitely differentiable functions with
at most polynomial growth together with all their derivatives.

(This always exist, the transverse gauge giving an explicit
example).
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The Framework

For any u ∈ S(Rd) (the Schwartz test functions), we define
the operator:

∀x ∈ Rd ,
[
OpA(h)u

]
(x) :=

(2π)−d

∫
R2d

e i<x−y ,η>ωA(x , y)h

(
x + y

2
, η

)
u(y) dy dη,

where ωA(x , y) := exp
(
−i
∫
[x ,y ] A

)
, ∀(x , y) ∈ Rd × Rd .

Theorem [IMP ’07]: The operator OpA(h) is bounded for
m ≤ 0 and for m > 0 it is essentially self-adjoint on S(Rd);
we denote by H(h,A) its closure in L2(Rd).

Theorem [IMP ’07]: For m > 0 the domain of H(h,A) is

Hs
A(Rd) :=

{
u ∈ L2(Rd) | Psu ∈ L2(Rd

}
,

with Ps := OpA(ps), ps(η) :=< η >s .
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Polynomial decay

Theorem A - Polynomial Decay

Let us suppose that

Hypothesis h is verified,

the magnetic field verifies Hypothesis B,

we fixed a vector potential for the magnetic field as in
Hypothesis A.

Let λ ∈ σdisc(H(h,A)) and u ∈ Ker
(
H(h,A)− λ

)
.

Then

1 < x >p u ∈
⋂

n∈N
D
(
H(h,A)n

)
∀p ∈ N.

2 If m > 0 or if m < 0 and λ 6= 0 then u ∈ S(Rd).
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Exponential decay

Notation: For δ > 0

Dδ :=
{
ζ ∈ Cd | |ζj | < δ ,∀j ∈ {1, . . . , d}

}
.

Hypothesis ω (of analytic extension)

Let h ∈ Sm(Rd) and suppose that there exists δ > 0 and a
function h̃ : Rd × Dδ → C such that:

for any x ∈ Rd the function h̃(x , ·) : Dδ → C is analytic;

the map Rd × Rd 3 (x , η) 7→ h̃(x , η + iξ) ∈ C is of class
Sm(Rd) uniformly (for the Fréchet topology) with respect to
ξ = (ξ1, . . . , ξd) ∈ Rd for |ξj | < δ, 1 ≤ j ≤ d ;

we have: h = h̃
∣∣∣
Rd×Rd

.

WIAS - February, 2011 Magnetic eigenfunctions decay



Exponential decay

Theorem B - Exponential Decay

Let us suppose that

Hypothesis h and ω are verified,

the magnetic field verifies Hypothesis B,

we fixed a vector potential for the magnetic field as in
Hypothesis A.

Let λ ∈ σdisc(H(h,A)) and u ∈ Ker
(
H(h,A)− λ

)
.

Then there exists ε0 > 0 such that for any ε ∈ (0, ε0] we have that

1 eε<x>u ∈
⋂

n∈N
D(Hn).

2 If m > 0 or if m < 0 and λ 6= 0 then eε<x>u ∈ S(Rd).
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The Abstract Weighted Estimation
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Abstract Weighted Estimation

Let f : Rd → [1,∞) be a measurable function.

Let fε(x) := f (εx) for any ε > 0.

Hypothesis W

Let H be a self-adjoint operator in L2(Rd). We suppose that:

for any u ∈ D(H) and ε ∈ (0, 1] we have that f −1
ε u ∈ D(H);

on D(H) we define Hε := fεHf −1
ε = H + εRε for any ε ∈ (0, 1]

and suppose that the operators Rε are H-relatively bounded
uniformly in ε ∈ (0, 1].
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Abstract Weighted Estimation

Proposition

Let H be a self-adjoint operator in L2(Rd) that verifies Hypothesis
W with respect to a weight function f and suppose λ ∈ σdisc(H).
Then there exists ε0 ∈ (0, 1] such that for any ε ∈ (0, ε0] we have
that fεu ∈ D(Hn) for any n ≥ 1 and any u ∈ Ker(H − λ).

The proof is based on basic perturbation results and the following
observation: ∀vε ∈ D(H)

uε := f −1
ε vε ∈ D(H), and (H − λε)uε = f −1

ε (Hε − λε)vε.
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Proof of the Main Theorems
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Proofs

The proof of our Theorems relies on the magnetic
pseudodifferential calculus we have developped previously.

The behaviour with respect to the small parameter ε ∈ (0, ε0]
is achieved by using some asymptotic expansions near ε = 0

The control of the remainders puts into evidence in a natural
way a class of symbols with three variables.
In fact it seems easier to sistematically work with a
pseudodifferential calculus associated to such symbols.

Definition

For a ∈ Sm(R2d × Rd) we consider the linear operator defined by
the following oscillatory integral:

[E(a)u] (x) := (2π)−1

∫
R2d

e i<x−y ,η>ωA(x , y)a(x , y , η)u(y) dy dη,

∀u ∈ S(Rd), ∀x ∈ Rd .
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Proofs

Proposition

Let a ∈ Sm(R2d × Rd) for some m ∈ R. Then there exists a

unique symbol
◦
a ∈ Sm(Rd) such that E(a) = OpA(

◦
a) and the

following map is continuous

Sm(R2d × Rd) 3 a 7→ ◦
a ∈ Sm(Rd).

Proof:
With L : R2d × Rd → Rd × Rd ; L(x , y , η) :=

(
(x + y)/2, η

)
and R2d 3 (u, v) 7→ S(u, v) :=

(
(u + v)/2, (u − v)

)
∈ R2d ,

for b ∈ Sm(Rd) we can write the distribution kernel of E(a) as

Kb◦L = ωAS−1F−1
2 b.

But ωAS−1F−1
2 is an invertible operator.
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Proof of Theorem A - Polynomial Decay

We shall apply our abstract weighted estimation to the
self-adjoint operator H associated to OpA(h).

Proposition

Let f (x) :=< x >p for some fixed p ∈ N.

Let b ∈ Sm(R2d × Rd) for some m ∈ R.

Then there exists a bounded family of symbols {sε}ε∈(0,1] in

Sm−1(R2d × Rd) that verify the following equality as linear
operators on S(Rd):

fεE(b)f −1
ε = E(b) + εE(sε), ∀ε ∈ (0, 1].

We know that D(H) = Hm
A (Rd) if m > 0 and

D(H) = L2(Rd) if m ≤ 0.

Due to the above remarks f (x) :=< x >p satisfies Hypothesis
W with respect to H.
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Proof of Theorem A - Polynomial Decay

Point 2:

m > 0: For any n ≥ 1 we have D(Hn) = Hnm
A (Rd).

Thus: u ∈ Ker
(
H(h,A)− λ

)
implies

< x >p u ∈ H∞A (Rd) =
⋂

k∈N
Hk

A(Rd), ∀p ∈ N.

And for Aj ∈ C∞pol(Rd) we conclude that

< x >p ∂αu ∈ L2(Rd) for any p ∈ N and any α ∈ Nd

m < 0 and λ 6= 0: Hε is a magnetic pseudodifferential
operator of order m.
∀ε ∈ (0, ε0], ∃nε ∈ N∗ such that ∀u ∈ Ker(H − λ) we can find
v ∈ L2(Rd) such that (Hε − λ)nεv = 0 and u = f −1

ε v .
λ 6= 0 implies that v = Qεv with Qε a magnetic
pseudodifferential operator of order m < 0 and thus
v ∈ H∞A (Rd) and the proof can continue as in the case m > 0.
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Proof of Theorem B - Exponential Decay

Let us consider the function f : Rd → [1,∞); f (x) = e<x>.

bε,j(x , y) := ε(xj + yj)
(
< εx > + < εy >

)−1
,

cε : R2d × Rd → C; cε(x , y , η) := h̃
( x+y

2 , η + iεbε(x , y)
)
.

Proposition B.1

Under the assumptions of Theorem B, we denote by
ε0 := min{1, δ/4} and for any ε ∈ (0, ε0],
we have cε ∈ Sm(R2d × Rd) uniformly with respect to ε ∈ (0, ε0]
and the following equality is true

fεOpA(h)f −1
ε = E(cε), ε ∈ (0, ε0].
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Proof of Theorem B - Exponential Decay

We can write:

cε(x , y , η) = h

(
x + y

2
, η

)
+ εdε(x , y , η), ∀(x , y , η) ∈ R3d , ∀ε ∈ (0, ε0]

with

dε(x , y , η) := i

∫ 1

0

〈
bε(x , y),

(
∇ηh̃

)(x + y

2
, η + itεbε(x , y)

)〉
dt

a family of symbols of class Sm−1(R2d × Rd) uniformly with
respect to ε ∈ (0, ε0].

Proposition B.2

Under the assumptions of Theorem B there exists a bounded
family of symbols {rε}ε∈(0,ε0]

⊂ Sm−1(Rd) such that

fεOpA(h)f −1
ε u = OpA(h) + εOpA(rε), ∀ε ∈ (0, ε0].
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