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Introduction

Introduction: hybrid systems and heat transport

Contact 1/2: open, classical treatable, thermodyn. reservoirs with
constant temperatures T1/2, diffusiv transport

Device: ideal nanocrystal structure, quasi-ballistc transport,
interface scattering, scattering theory, quantum mechanics
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Introduction

Introduction: transport of phonons

Device dimensions are more and more frequently in the magnitude
of typical phonon wavelength.

So heterogeneous structures and associated interface effects play a
central part.

On this nanometre scale the wave nature of phonons becomes
more important.

Mathias Käso (BTU) Transport und Green´s functions 4. Februar 2011 3 / 25



Introduction

Introduction: transport of phonons

Device dimensions are more and more frequently in the magnitude
of typical phonon wavelength.

So heterogeneous structures and associated interface effects play a
central part.

On this nanometre scale the wave nature of phonons becomes
more important.
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Introduction

Introduction: transport of phonons

In this case, the classical approaches are rather not qualified.

We have quasi ballistic transport with interface scattering.

This phenomena, we can describe with the method of the
atomistic Green‘s functions (AGF).
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The dynamical bases General description of the transport problem

Model of a contact-device-contact-structure

N-atomic structure divided into diverse substructures.

d degrees of freedom per atom.
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The dynamical bases Harmonic and dynamic matrix

Harmonic Matrix

The AGF-Formalism is based on a harmonic or dynamic matrix.

We use a harmonic approximation of the crystal potential U(R(t)).

For device length less than 20 nm are anharmonic effects at room
temperature negligible.
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The dynamical bases Harmonic and dynamic matrix

Harmonic matrix

For the total potential in harmonic approximation we can also
write:

U(u(t)) =
1

2

Nd∑
p,q=1

(
∂2U

∂Rp∂Rq

)
R0

up(t)uq(t).

It is: U(R0) := 0 and ~∇U(R)|R0 = 0.

We define the harmonic matrix:

Φp,q :=

(
∂2U

∂Rp∂Rq

)
R0

.
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The dynamical bases Harmonic and dynamic matrix

Dynamic matrix and the eigenvalue problem

Equation of motion for every degree of freedom ui:

Mi
d2

dt2
ui(t) = −∂U(u)

∂ui
= −

Nd∑
j=1

Φi,juj(t).

These Nd equations define the following eigenvalue problem:

(ω2[E]− [D])u = 0. (1)

Here we have the dynamic matrix [D] (real, symmetric and positiv
definite) with:

[D]i,j = Di,j =
Φi,j√
MiMj

.
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AGF-Formalism Basics of Green’s formalism

The Green´s function / Green´s matrix

Consider following equation where L̂ represents a linear operator
in matrix notation and S represents a perturbation:

[L̂Ψ]Ψ = S.

Formally one defines the Green´s function or matrix as follows:

[L̂Ψ]Ψ = S ⇒ Ψ = [L̂Ψ]−1S = [G]S ⇔ [G] := [L̂Ψ]−1.

The last equation provides us a important relation:

[G] := [L̂Ψ]−1 ⇔ [L̂Ψ][G] = [I].
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AGF-Formalism Application of the Green´s formalism

The modified eigenvalue problem

The eigenvalue problem (1) can be written down in a structured
and simple modified form:[(ω + i0+)2E −D1] −[τ1]+ [0]

−[τ1] [ω2E −DD] −[τ2]
[0] −[τ2]+ [(ω + i0+)2E −D2]


Φ1

Ψ
Φ2

 =


SR1
0
SR2
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AGF-Formalism Application of the Green´s formalism

The modified eigenvalue problem

Now we consider the three matrix equations:[(ω + i0+)2E −D1] −[τ1]+ [0]
−[τ1] [ω2E −DD] −[τ2]

[0] −[τ2]+ [(ω + i0+)2E −D2]


Φ1

Ψ
Φ2

 =


SR1
0
SR2



With matrix algebra we get:

([ω2E −DD]− [Σ1(ω)]− [Σ2(ω)])Ψ(ω) = S(ω). (2)

[Σ1/2(ω)] = [τ1/2][g1/2(ω)][τ1/2]+

[g1/2(ω)] = [(ω + i0+)2E −D1]−1

S(ω) = S1(ω) + S2(ω) = [τ1]ΦR
1 (ω) + [τ2]ΦR

2 (ω)
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Mathias Käso (BTU) Transport und Green´s functions 4. Februar 2011 11 / 25



AGF-Formalism Application of the Green´s formalism

The modified eigenvalue problem

Now we consider the three matrix equations:[(ω + i0+)2E −D1] −[τ1]+ [0]
−[τ1] [ω2E −DD] −[τ2]

[0] −[τ2]+ [(ω + i0+)2E −D2]


Φ1

Ψ
Φ2

 =


SR1
0
SR2


With matrix algebra we get:

([ω2E −DD]− [Σ1(ω)]− [Σ2(ω)])Ψ(ω) = S(ω). (2)

[Σ1/2(ω)] = [τ1/2][g1/2(ω)][τ1/2]+

[g1/2(ω)] = [(ω + i0+)2E −D1]−1

S(ω) = S1(ω) + S2(ω) = [τ1]ΦR
1 (ω) + [τ2]ΦR

2 (ω)
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AGF-Formalism Application of the Green´s formalism

The closed problem

The green´s matrix of the device can be defined by equation (2):

[GD(ω)] := [ω2E −DD − Σ1(ω)− Σ2(ω)]−1.

[GD] leads finily to the device solution Ψ with

Ψ = [GD]S.
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AGF-Formalism Current in the AGF-Formalism

Total current and thermal conductance

The current in the AGF-Formalism is given in a typical Landauer
form:

J(T1, T2) =

∫ ∞
0

~ω
2π

Ξ(ω)[N(ω, T1)−N(ω, T2)]dω.

Ξ(ω) is the transmission function with

Ξ(ω) = Tr[Γ1(ω)GD(ω)Γ2(ω)G+
D(ω)].

The matrices [Γ1/2(ω)] therby are −2=[Σ1/2(ω)], so that

[Γ1/2(ω)] = i[Σ1/2(ω)− Σ+
1/2(ω)].

Finaly the thermal conductance λ is given by:

λ(T1, T2) =
J(T1, T2)

∆T
, ∆T = T1 − T2.
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AGF-Formalism and 1d-Structures Analytical discussion of the homogeneous chain

Thermal conductance of the homogeneous chain
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AGF-Formalism and 1d-Structures Analytical discussion of the homogeneous chain

Transmission: homogeneous vs heterogeneous chain
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AGF-Formalism and 1d-Structures Analytical discussion of the homogeneous chain

Transmission function of the homogeneous chain

Now we consider a homogeneous, atomic chain, which is described
by the atomic masses Mi = M and the spring constants fi = f .

The transmission function is given by:

Ξ(ω) := Θ(2ω0 − ω).

The thermal conductance λh of the homogeneous chain is

λh(T1, T2) =
Jh(T1, T2)

∆T
=

∫ 2ω0

0

~ω
2π

[N(ω, T1)−N(ω, T2)]

∆T
dω.
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AGF-Formalism and 1d-Structures Analytical discussion of the homogeneous chain

Linear Approximation of [N(ω, T1)−N(ω, T2)]

For ∆T → 0 we can expand N(ω, T2) in a series with

N(ω, T2) = N(ω, T1 + ∆T ) =
1

e
~ω

kB(T1+∆T ) − 1

≈ N(ω, T1) +
~ω
kBT 2

1

e
~ω

kBT1(
e

~ω
kBT1 − 1

)2 ∆T.

It follows for the thermal conductance:

λh(T ) =
~2

2πkBT 2

∫ 2ω0

0

ω2e
~ω
kBT(

e
~ω
kBT − 1

)2dω.

In this equation we have replaced T1 by T .
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Mathias Käso (BTU) Transport und Green´s functions 4. Februar 2011 17 / 25



AGF-Formalism and 1d-Structures Analytical discussion of the homogeneous chain

Parameterization of λh(T )

Now we define the two dimensionless parameters:

β :=
T

Tc
with Tc :=

~ω0

kB
and x :=

ω

ω0
.

With this settings, we can write:

λh(β) =
1

2
λ∞

∫ 2

0

x2e
x
β

β2
(
e
x
β − 1

)2dx.

In this equation is λ∞ = kBω0
π the thermal conductance of a

homogeneous chain for T →∞.
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AGF-Formalism and 1d-Structures Analytical discussion of the homogeneous chain

Final formula for the thermal conductance λn(β)

Finally we normalize λh by λ∞ and integrate over x and so we get:

λn(β) = − 2

β

(
1− e−

2
β

)−1
− βdilog(e

2
β ).

In this dimensionless equation we have the Dilogarithm Function
with the special definition:

dilog(t) :=

∫ t

1

ln(s)

1− s
ds.
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2
β ).

In this dimensionless equation we have the Dilogarithm Function
with the special definition:

dilog(t) :=

∫ t

1

ln(s)

1− s
ds.
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Graphical representation of λn(β)

For small β, we observe a linear behavior, which changes to a
constant behavior for increasing β.

The characteristic point of change is given by β = 1 or T = Tc.
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Approximations for λn(β)

We have seen that there exist two interesting cases:

1 λn(β) ∝ β for small β,
2 λn(β) = 1 for great β.

Now we want analyze this two cases.

1 For small β we need a asymptotic series expansion and we get:

λn(β) ≈ 1

6
π2β − (2 + β)e

− 2
β .

2 For great β we need a laurent series expansion and we get:

λn(β) ≈ 1− 1

9β2
.
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Mathias Käso (BTU) Transport und Green´s functions 4. Februar 2011 21 / 25



AGF-Formalism and 1d-Structures Analytical discussion of the homogeneous chain

Approximations for λn(β)

We have seen that there exist two interesting cases:
1 λn(β) ∝ β for small β,
2 λn(β) = 1 for great β.

Now we want analyze this two cases.

1 For small β we need a asymptotic series expansion and we get:

λn(β) ≈ 1

6
π2β − (2 + β)e

− 2
β .

2 For great β we need a laurent series expansion and we get:

λn(β) ≈ 1− 1

9β2
.
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Graphical representation of λn(β) for small β

Black Line: λn(β) ≈ 1
6π

2β − (2 + β)e
− 2
β = λ0

0(β) + λ0
1(β).
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Graphical representation of λn(β) for great β

Black Line: λn(β) ≈ 1− 1
9β2 = λ∞0 (β) + λ∞1 (β).
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Contribution of the correction terms

Now we are interested in the β for which we can approach λn(β)
by λ0

0(β) or λ∞0 (β).

For this problem we define the relativ deviations εi with i = 0,∞:

εi :=

∣∣∣∣λi1λi0
∣∣∣∣ .

For small β we have:

ε0 =
(2 + β)e

− 2
β

1
6π

2β
⇒ − 2

β
e
− 2
β = e

− 2
β − 1

6
ε0π

2β.

This special equation is solved by the LambertW function, it is:

β0 = − 2

LambertW(− ε0π2

6e ) + 1
.
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Contribution of the correction terms

For great β we have:

ε∞ =

1
9β2

1
⇒ β∞ = ±1

3

√
1

ε∞
.

We have to choose the positiv value, because it is the physical
Solution:

β∞ =
1

3

√
1

ε∞
.

β < β0 we can write λn(β) ≈ 1
6π

2β.

β > β∞ we can write λn(β) ≈ 1.

Silicon with f = 32N/m, M = 4.6e− 26kg and ε = ε0 = ε∞ = 0.01:

Tc ≈ 200K, T0 = β0Tc ≈ 66K, T∞ = β∞Tc ≈ 670K.

Mathias Käso (BTU) Transport und Green´s functions 4. Februar 2011 25 / 25



AGF-Formalism and 1d-Structures Analytical discussion of the homogeneous chain

Contribution of the correction terms

For great β we have:

ε∞ =

1
9β2

1
⇒ β∞ = ±1

3

√
1

ε∞
.

We have to choose the positiv value, because it is the physical
Solution:

β∞ =
1

3

√
1

ε∞
.

β < β0 we can write λn(β) ≈ 1
6π

2β.

β > β∞ we can write λn(β) ≈ 1.

Silicon with f = 32N/m, M = 4.6e− 26kg and ε = ε0 = ε∞ = 0.01:

Tc ≈ 200K, T0 = β0Tc ≈ 66K, T∞ = β∞Tc ≈ 670K.
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Mathias Käso (BTU) Transport und Green´s functions 4. Februar 2011 25 / 25


	Introduction
	The dynamical bases
	General description of the transport problem
	Harmonic and dynamic matrix

	AGF-Formalism
	Basics of Green's formalism
	Application of the Green´s formalism
	Current in the AGF-Formalism

	AGF-Formalism and 1d-Structures
	Analytical discussion of the homogeneous chain


