#### High-mobility electron transport on cylindrical surfaces

Klaus-Jürgen Friedland

Paul-Drude-Institute for Solid State Electronics, Berlin, Germany

- Concept to create high mobility electron gases on free standing semiconductor heterostructures -Experiment
- Electronic effects on a cylinder surface
  - Adiabatic transport transport nontrivial trajectories Landauer Büttiker using open orbits
  - Quantum Hall effect on a cylinder surface
    - Landauer Büttiker fails take self- consistent screening
  - Commensurable resistance oscillations for tangentially directed magnetic fields
    - Calculation of 'skipping orbits'



#### Contributions

- A. Riedel,
- R. Hey,
- H. Kostial<sup>†</sup>
- U. Jahn,
- M. Höricke,
- A. Siddiki
- D. K. Maude.

PDI

University Mugla, Turkey HMFL CNRS, France



#### **Rolling-up a Heterostructure** B In<sub>x</sub>Ga<sub>1-x</sub>As Stressor $\mathbf{B}_{\perp} = \mathbf{B} \cos(\boldsymbol{\varphi})$ $h_1$ (nm) $h_2$ (nm) x<sub>In</sub> $\Delta \epsilon$ 0.13 18.7 156 #A 11 #B 0.195 153 (Al,Ga)As with 2DEG, h<sub>2</sub> (In,Ga)As stressor, h<sub>1</sub> (AlAs) release layer

$$r = \frac{h_1^4 + 4\chi h_1^3 h_2 + 6\chi h_1^2 h_2^2 + 4\chi h_1 h_2^3 + \chi^2 h_2^4}{6\varepsilon\chi(1+\upsilon)h_1 h_2(h_1 + h_2)}$$
ratio of Young's moduli  $\chi$ , Poisson ratio  $\nu$  and strain  $\varepsilon$ 
- Strain gradient  $\Delta \varepsilon \approx 1 \%$ 
- Magnetic field gradient  $\approx 1T/\mu m$ 



#### Heterostucture tubes containing a Hall bar







 $\odot$ 

# Adiabatic transport on cylindrical surface

Mean free path compares with the rolling radius:  $l_{mfp} \cong 20 \ \mu m \cong r \ \phi = 0^{\circ} \Rightarrow \text{low gradient}$ 





# **Ballistic transport on cylindrical surface II**

Mean free path compares with the rolling radius:  $l_{\rm mfp} \cong r$ ,  $\varphi = 29^{\circ} \Rightarrow \delta B_{\perp}/B_{\perp} \cong 300\%$ 

- Extended
  - **trochoid-like trajectories (ETT)** move oppositely to
- guided trajectories (GT)







K.-J.Friedland et al., Phys. Rev.B 2007



$$\frac{\mu_3 - \mu_4}{I} = \frac{h}{2e^2} \frac{K}{M(M+K)},$$

$$\frac{\mu_2 - \mu_1}{I} = \frac{h}{2e^2} \frac{1}{M}, \qquad \mu_2 = \mu_3$$



# **Quantum Hall effect – one dimensional Landau states**





Quantum Hall effect dominated by

- one-dimensional Landau states
  (1DLS) at the low magnetic field side with
- maximum number of states

Landauer Büttiker approach:

$$\begin{pmatrix} I \\ -I \\ 0 \\ 0 \end{pmatrix} = \frac{h}{2e^2} \begin{pmatrix} -M & 0 & 0 & M \\ M & -(M-K)-K & 0 & 0 \\ 0 & M-K & -(M-K) & 0 \\ 0 & K & M-K & -M \end{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{pmatrix}$$
$$\frac{\mu_2 - \mu_1}{I} = \frac{\mu_3 - \mu_1}{I} = \frac{h}{2e^2} \frac{1}{M}, \quad \mu_2 = \mu_3 = \mu_4$$









#### **Quantum Hall effect**





#### **1D Landau states**





JETP Letters, Vol. 72, No. 10, 2000, pp. 503–505. From Pis'ma v Zharnal Éksperimental'noi i Teoreticheskoi Fiziki, Vol. 72, No. 10, 2000, pp. 723–726. Original English Text Copyright © 2000 by Chaplik.



#### Some Exact Solutions for the Classical Hall Effect in an Inhomogeneous Magnetic Field<sup>1</sup>

A. V. Chaplik

Institute of Semiconductor Physics, Siberian Division, Russian Academy of Sciences, pr. Akademika Lavrent'eva 13, Novosibirsk, 630090 Russia e-mail: chaplik@isp.nsc.ru Received October 4, 2000

$$j_{x} = \sigma_{xx}E_{x} + \sigma_{xy}E_{y}$$

$$j_{y} = -\sigma_{xy}E_{x} + \sigma_{xx}E_{y}$$
(1)

 $j_y = 0, \quad E_y = -\frac{\sigma_{xy}}{\sigma_{xx}}E_x = -\mu BE_x$  (2) The classical Hall effect in inhomogeneous systems is considered for the case of one-dimensional inhomogeneity. For a certain geometry of the problem and for the magnetic field linearly depending on the coordinate, the distribution of current density corresponds to the skin-effect. © 2000 MAIK "Nauka/Interperiodica".

PACS numbers: 72.15.Gd

$$div\mathbf{j} = 0 \qquad div\mathbf{j} = \frac{\delta j_x}{\delta x} = (\sigma_{xx} + \frac{\sigma_{xy}^2}{\sigma_{xx}})\frac{\delta E_x}{\delta x} = -(\sigma_{xx} + \frac{\sigma_{xy}^2}{\sigma_{xx}})\frac{\delta^2 \Phi}{\delta x^2} = 0$$

General solution

$$\Phi = C_1(y)x + C_0(y)$$
 where  $\mathbf{E} = -\nabla \Phi(x, y)$ 

From (2): 
$$\frac{\delta\Phi}{\delta y} = -\mu B \frac{\delta\Phi}{\delta x} \qquad \frac{\delta C_1(y)}{\delta y} x + \frac{\delta C_0(y)}{\delta y} = -\mu B C_1(y)$$

Field gradient along the current :  $B(x) = B_0 kx$   $C_1 = C e^{-\mu B_0 ky}$ ,  $C_0 = 0$ 

$$E_{y} = C\mu B_{0}kye^{-\mu B_{0}ky}, \quad E_{x} = -Ce^{-\mu B_{0}ky}, \quad j_{x} = -\sigma_{xx}Ce^{-\mu B_{0}ky}$$





# Self-consistent calculation of the density and current distribution

- Total electrostatic potential energy  $V_{tot}(x, y) = V_{bg}(x, y) + V_{ext}(x, y) + V_H(x, y)$ 
  - $\begin{array}{ll} V_{bg}(x,y) & background potential generated by the donors \\ V_{ext}(x,y) & external potential from the gates (which will be used to simulate the filling factor gradient) \\ V_{H}(x,y) & Hartree potential to describe the mutual electron-electron interaction \end{array}$
- Electron density

 $n_{el}(x, y) = \int D(E, x, y) f(E + V_{tot}(x, y) - \mu^*) dE$ 

 $D(E, x, y) \quad (local) \text{ density of states}$   $f(E) = 1/[\exp(E/k_bT)) + 1] \quad Fermi \text{ function}$   $\mu^* \quad electrochemical \text{ potential}$ 

• Hartree potential explicitly depends on the electron density via

$$V_H(x, y) = \frac{2e}{\kappa} \int_A K(x, y, x', y') n_{el}(x', y') dx' dy'$$

K(x, y, x', y') solution of the 2D Poisson equation satisfying the periodic boundary conditions,

# **Screening theory** in the QHE

Classical and quantum mechanical drift velocities,

$$\vec{v}_D = c \frac{\vec{E} \times \vec{B}}{B^2} \quad v_y = -\frac{eE_x}{m\omega_c}$$

**>** Current flows along the Incompressible Stripes





- Self consistent calculation of carrier and current distribution



at average filling factors  $\nu > 2$ 

Calculations A. Siddiki



## **Resistance oscillations** for tangentially directed magnetic fields





## **Resistance oscillations** for tangentially directed magnetic fields





## **Oscillations with 'free electron states'**



**Calculation of the effective potential:** 

-Free electron states , classically 'Snake-like orbits - SLO - stripe of width  $L_{\text{free}}$ 





## **Oscillations with 'free electron states'**



Commensurability  $L_{free}^{2} = 2\sqrt{2} \frac{\hbar (k_{F} - k_{X})}{eB_{0}} R$ 

SLO period  $\leftarrow \rightarrow$  wave-guide width W

$$\frac{W}{L_{free}} = C \times \sqrt{B_0} = 2\pi q,$$







#### **Calculation** – rough boundary scattering





**Compensation of skipping orbits with statistical scattering at the rough wave-guide boundary** 

Need a preferential momentum directions  $\rightarrow k_y k_x$ pre-selection



#### **Calculation -** $k_y k_x$ pre-selection





**Transverse force due to torque from induced magnetic moment** 





# 'zitterbewegung' of a 1D 'Skin'-channel



 $H_{so} \propto \left| \vec{k} \, \vec{\sigma} \right|$ 

'zitterbewegung' due to
spin precession
J. Schliemann Phys.Rev.B (2006)

**!!** All electrons along  $L_{free}$  have the chance to acquire an orthogonal momentum  $p_x$ 



$$L_{so} = \frac{\hbar^2}{2m\beta} \cong 2.6\,\mu m$$

using Dresselhaus term  $\beta$  for 13 nm wide GaAs QW

K.-J. Friedland et al., phys. stat. sol., 2008

# Summary

#### QHE :

- Transport theory beyond Landauer Büttiker
  - Sequential transport along incompressible/compressible regions
  - Screening theory in nontrivial geometries to model lateral position of incompressible stripes  $\rightarrow$  quantized in  $R_1$  and  $R_H$

#### **Oscillations in tangentially oriented fields:**

- Commensurability of free-electron length  $L_{\rm free}$  with the wave guide width W
  - → 'Snake'-like trajectories compensate by scattering at rough boundaries
    - Torque from induced magnetic moment and/or
    - Spin precession in a one-dimensional skin-channel allow to acquire the necessary orthogonal momentum  $k_{\rm X}$

