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Abstract— We present a novel method — the variational
mode-matching (VMM) method — for the simulation of planar-
waveguide based photonic devices for, e.g., wavelength filter and
input/output coupler applications. These devices may contain
quasi-periodic grating couplers, waveguide transitions, and ta-
pers. VMM preserves the advantages of film mode-matching
(MM) techniques while increasing the robustness and providing
the capability of adaptive refinement for fast convergence. To
demonstrate the efficiency of this approach, two grating-based
devices showing strong coupling with radiation fields are inves-
tigated numerically.

I. INTRODUCTION

The in-depth simulation of wave-propagation phenomena
in complex guided-wave multi-section devices like grating-
based wavelength filters or input/output couplers employing
strongly coupling gratings such as surface gratings and/or
showing abrupt waveguide transitions requires rigorous numer-
ical methods. Among these methods are mode-matching (MM)
techniques [1][2] which must be combined with perfectly-
matched layers (PMLs) [3] to permit an accurate description
of radiation fields. However, MM can only be as stable as the
algorithms which are used to determine the spectrum of the
local PML waveguide modes. Since the proper classification of
PML modes is often very difficult, instabilities can arise from
an improper truncation of the mode spectrum. In addition,
MM only allows uniform refinement as the number of modes
in the field expansion is increased what may lead to rather
slow convergence and, thus, a significant numerical overhead.

In the following, the VMM method preserving the advan-
tages of MM while avoiding the drawbacks mentioned above
will be presented.

II. THEORY

With the 2D-assumption ∂y(·) = 0 Maxwell’s equations for
dielectric materials characterized by the dielectric permittivity
ε(x, z) take the form

∂xa∂xφ+ ∂za∂zφ+ k2
0bφ = ık0j0(x)δ(z − zS) (1)

where φ = Ey, a = 1, b = ε for TE- and φ = Hy,
a = 1

ε
, b = 1 for TM-polarization, respectively; k0 = 2π

λ0

(vacuum wavelength λ0). In the z-direction, the simulation
domain 0 ≤ z ≤ L is assumed to be terminated by either
electric or magnetic walls. To mimic an open domain, PMLs
are introduced via complex variable stretching [3]: z 7→
z+ ı

∫ z

0 dτ σ(τ) at the boundaries. For incoupling problems an
equivalent driving current j0(x) located at z = zS is assumed
causing the incident field φ(in)(x, zS).
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To solve the homogeneous problem for a layered system,
the separation ansatz

φ(x, z) =

nϕ
∑

j=1

ψj(x)ϕj(z) (2)

with transverse shape functions ϕj(z), which must fullfill the
outer boundary conditions (Dirichlet or Neumann), is used.
Apart from this constraint, the set of shape functions may
be chosen rather freely offering the opportunity of adaptive
refinement in z-regions where rapid variations of the field are
expected (e.g., in the grating region of metal gratings).

Within the layer l = 1, . . . , nl, xl−1 < x < xl(= xl−1+dl),
where ε does not depend on x, the fields ψj(x) are of the form

ψ
(l)
j (x) =

∑

ρ

C
(l)
jρ

[

A(l)
ρ eıβ(l)

ρ (x−xl−1)+B(l)
ρ e−ıβ(l)

ρ (x−xl)
]

(3)

where the (approximate) modal propagation constants β
(l)
ρ

and modal expansion coefficients C
(l)
jρ are obtained from

the eigenvalue problem E
(l) ~C

(l)
ρ = (β

(l)
ρ /k0)

2
V

(l) ~C
(l)
ρ

with (V(l))mj =
∫

dz ϕm(z)a(l)(z)ϕj(z) and (E(l))mj =
∫

dz ϕm(z)b(l)(z)ϕj(z)− 1
k2
0

∫

dz (∂zϕm(z))a(l)(z)(∂zϕj(z)).
To determine the A- and B-coefficients in (3) the continuity
of φ and 1

ık0
a∂xφ across the x-interfaces is exploited yielding

the layer-to-layer scattering matrix
[

t
(l) ~A(l)

t
(l+1) ~B(l+1)

]

=

[

R̂l,l+1 T̂l,l+1

T̂l+1,l R̂l+1,l

][

~B(l)

~A(l+1)

]

(4)

where
[

R̂l,l+1 T̂l,l+1

T̂l+1,l R̂l+1,l

]

=

[

C
(l) −C

(l+1)

D
(l)

D
(l+1)

]

−1[−C
(l)

C
(l+1)

D
(l)

D
(l+1)

]

with t
(l) = diag(eıβ(l)

ρ dl) and D
(l) = V

(l)
C

(l)diag(β
(l)
ρ /k0).

This scattering-matrix scheme establishes a numerically stable
method for modeling multilayer systems [4]. The numerical
complexity is O(nln

2
ϕ); calculating the approximate

eigenmodes requires additional O(n′

ln
3
ϕ) flops (n′

l: number
of different local waveguides).

III. RESULTS

To show the effectiveness of the VMM method, we have
simulated two waveguide-grating structures (WGSs) based on
a SiO/SiN/Air waveguide (SiN layer thickness: 0.5µm) with
a rectangular surface relief grating with depth h and a duty
cycle of 0.5. In the simulation, the WGS is placed between
electric walls (to discretize the local waveguide modes) and
PMLs. The refractive indices

√
ε of SiN and SiO at λ0 ≈

1.5µm have been taken to be 2 and 1.45, respectively. In
both examples the nϕ = 100 lowest order modal fields of the
SiO/SiN/Air waveguide with the PMLs turned off (to enhance



Fig. 3. Optical field in a grating incoupler/taper device with butt-coupling into the air. The taper is approximated by a staircase curve with 25 steps.

a)

b)

c)

Fig. 1. Field distribution at a) λ0 = 1.56 µm (right SB edge), b) λ0 =

1.5215 µm (localized defect mode), c) λ0 = 1.46 µm (left SB edge).

the convergence rate of the series (2)) have been used as
ansatz functions. Notice that the PMLs enter the model via
the matrices V

(l) and E
(l) rigorously.

The first structure comprises a finite-length WGS (h =
0.25µm, grating period p = 0.45µm, 40 periods) with a
≈ λn

4 -phase shift in the middle (see sketch in Fig. 1). The
fundamental TE mode is assumed to be incident from the left.
Fig. 2 depicts the power reflection, transmission and radiation
losses as well as the modal amplitude attenuation for an infinite
(i.e., strictly periodic) WGS, which has been obtained from a
Floquet-Bloch theory [5], as a function of the wavelength.
The broadening of the stopband (SB) compared to that one
occurring in the infinite WGS can mainly be attributed to the
phase-shift. In the finite-length structure significant radiation
losses occur also well above the onset for grating coupled
radiation at λ0 = 1.41µm. The breakaway of the left (=
short-wavelength) SB edge is caused by excessive radiation
losses occurring at the interface between the flat waveguide
region and the grating region: The standing-wave pattern in
the grating region has its antinodes in the low-index grating
grooves resulting in a shift of the optical field towards the
substrate. This leads to a quite large mismatch of the optical
fields and, consequently, to a significant radiation loss. At the
right SB edge the standing-wave pattern is concentrated in the
high-index grating peaks causing a much smaller mismatch
and less radiation loss. The localized defect-mode at λ0 =
1.5215µm is strongly damped due to radiation fields excited in
the phase-shift region. The findings described above are made
evident by the representation of the optical field in Fig. 1.

The second structure is a grating incoupler with 50 periods
(h = 0.125µm, p = 0.85µm) combined with a linear taper
with a length of 15µm expanding the SiN core from 0.5µm
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Fig. 2. Left axis: Power reflection, transmission and radiation losses in
a finite-length WGS (40 periods) with phase shift. Right axis: Amplitude
attenuation in the infinite grating.

to 3µm for butt-outcoupling into the air. 40 grating periods
are illuminated with a plane TM-polarized wave with unity
amplitude, λ0 = 1.5µm, and an angle of incidence θ =
−10.25◦ giving j0(x) = 2 cos θeık0x sin θ in (1). The power
conversion ratio from the incident plane wave into the TM0

waveguide mode (βTM0/k0 = 1.6655) is 25.5 %. Scattering
losses at the interfaces between the grating region and the
homogeneous waveguide regions are of minor importance due
to the rather shallow surface grating. Fig. 3 shows the optical
field.

The VMM model of this structure contains 25200 un-
knowns. The computation time with a not yet optimized
implementation in octave (a freeware clone of Matlab)
is about 2 min on a conventional PC with a 2.66 GHz CPU.
There is still room for improvement by a factor of ≥ 10.
A finite-element (FE) model would require about five times
more unknowns — assuming a moderate discretization with 10
nodes per λn. Since in the VMM model the fields are expanded
in terms of very good approximations to the local waveguide
modes, phase-errors over long propagation distances (i.e.,
several hundreds of λn’s) are not a matter of fact as in a
FE discretization.
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