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What do we like to study?

1. Two leads coupled through a quantum well: spectral analysis.

2. What is a NESS?

3. Time-dependent Liouville equation for density matrices.

4. Current formulae (Landau-Lifschitz, Landauer-Büttiker).
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The model I

• In H := L2(R) we consider the self-adjoint Schrödinger operator
(Buslaev-Fomin ’62)

(Hf)(x) := −1
2

d

dx

1
M(x)

d

dx
f(x) + V (x)f(x), x ∈ R,

with domain

dom(H) := {f ∈ W 1,2(R) :
1
M

f ′ ∈ W 1,2(R)}.

• CONDITIONS: (a) The effective mass M(x) > 0 and the real
potential V (x) admit decompositions of the form (with va ≥ vb) :

M(x) :=





ma x ∈ (−∞, a]

m(x) x ∈ (a, b)

mb x ∈ [b,∞)

V (x) :=





va x ∈ (−∞, a]

v(x) x ∈ (a, b)

vb x ∈ [b,∞)
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The model II

(b) The function

m(x) +
1

ma(b)
∈ L∞((a, b)),

and the quantum well potential : v ∈ L∞((a, b)).

The quantum well is identified with the interval (a, b), (or physically,
with the three-dimensional layer (a, b)× R2).

The regions (−∞, a) and (b,∞) (or physically (−∞, a)× R2 and
(b,∞)× R2), are the reservoirs.
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The model III

• Besides its mathematical attraction, the model can be also
interesting for:

1. Quantum well lasers.

2. Resonant tunneling diodes.

3. Nanotransistors.

Kirkner, D.; Lent, C.: The quantum transmitting boundary method, J.
Appl. Phys. 67 (1990), 6353-6359.

Vinter, B.; Weisbuch, C.: Quantum Semiconductor Structures:
Fundamentals and Applications. Academic Press, Boston, 1991.
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What is (our) NESS? I

Definition 0.1. We call a bounded, self-adjoint, non-negative
operator % in L2(R) density-matrix operator or state, if the product
%M(χ(a,b)) is a trace-class operator. Here M(χ(a,b)) is the
multiplication operator induced in L2(R) by the characteristic
function χ(a,b) of any finite interval (a, b).

Definition 0.2. We call operator % a steady state for Hamilonian H ,
if it commutes with H , i.e. if % belongs to the commutant A′(H) of the
algebra A(H) generated by the functional calculus associated to H .
A steady state is called an equilibrium state, if it belongs to the
bi-commutant A′′(H) of this algebra.
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What is (our) NESS? II

Proposition 0.3. [RMP’04] Since va ≥ vb, the operator H is
unitarily equivalent to the multiplication M induced by the
independent variable λ in the direct integral of the spaces
L2(R, h(λ), ν) ' ⊕N

j=1C⊕ L2([va, vb],C)⊕ L2((va,∞),C2)
where:

h(λ) :=




C, λ ∈ (−∞, va]

C2, λ ∈ (va,∞)
,

and the measure:

dν(λ) =
N∑

j=1

δ(λ− λj)dλ + χ[vb,∞)(λ)dλ, λ ∈ R,

where {λj}N
j=1 denote the finite number of simple eigenvalues of H ,

which are all situated below the threshold vb.
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What is (our) NESS? III

• If %st is a steady state for H , then there exists a ν-measurable
function

R 3 λ 7→ ρ̃st(λ) ∈ B(h(λ))

of non-negative bounded operators on h(λ) such that
ν − supλ∈R ‖ρ̃st(λ)‖B(h(λ)) < ∞ and %st is unitarily equivalent to
the multiplication operator M(ρ̃) induced by ρ̃ via a generalized
Fourier transform Φ which makes H diagonal:

%st = Φ−1M(ρ̃)Φ.

• If %eq is an equilibrium state for H , then the corresponding ρ̃eq(λ)
is proportional to the identity matrix: ρ̃eq(λ) = α(λ) · I , hence one
gets %eq = D(H).
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Decoupled system I

• We start with a completely decoupled system:

Ha := L2((−∞, a]), HI := L2(I), Hb := L2([b,∞))

isolated quantum well I = (a, b). Then the total Hilbert space is
direct sum:

H = Ha ⊕ HI ⊕ Hb .

• With the subspace Ha we associate the Hamiltonian Ha:

(Haf)(x) := − 1
2ma

d2

dx2
f(x) + vaf(x),

f ∈ dom(Ha) := {f ∈ W 2,2((−∞, a)) : f(a) = 0}.
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Decoupled system II

•With HI we associate the Hamiltonian of isolated quantum well HI :

(HIf)(x) := −1
2

d

dx

1
m(x)

d

dx
f(x) + v(x)f(x),

f ∈ dom(HI) :=



f ∈ W 1,2(I) :

1
mf ′ ∈ W 1,2(I)

f(a) = f(b) = 0





• With Hb we associate the Hamiltonian Hb:

(Hbf)(x) := − 1
2mb

d2

dx2
f(x) + vbf(x),

f ∈ dom(Hb) := {f ∈ W 2,2((b,∞) : f(b) = 0}.
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Decoupled system III

• Hence in the space H we have three isolated subsystems:

HD := Ha ⊕HI ⊕Hb

• The quantum subsystems {Ha,Ha} and {Hb,Hb} are called left-
and right-hand reservoirs. The middle system {HI ,HI} is identified
with a closed quantum well.
• We assume that all three subsystems are at (internal) thermal
equilibrium. Then according our Definitions, the corresponding
sub-states must be functions of their corresponding sub-Hamiltonians.
• The total (non-equilibrium ) state is direct sum of these three
sub-states: %D := %a ⊕ %I ⊕ %b.
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The initial state

• According our Definitions 0.1 ,0.2 the thermal equilibrium
sub-states %a, %I and %b are the functions of corresponding
Hamiltonians :

%a := fa(Ha − µa), %I := fI(HI − µI), %b := fb(Hb − µb).

• Physical examples for fermions with chemical potentials µa, µI , µb

one can take from: Frensley, W. R.: Boundary conditions for open
quantum systems driven far from equilibrium, Rev. Modern Phys. 62
(1990), 745-791, proposes

fj(λ) := cj ln(1 + e−βλ), j ∈ {a, I, b}
λ ∈ R, β := 1/T . The constants are given by cj := m∗

j/~2π β, where
the m∗

j ’s are one dimensional effective masses. The initial state is:

%D := %a ⊕ %I ⊕ %b.
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NESS via time-dependent coupling

• The main question: can we construct a NESS for {H, H} starting
from %D?
• Let %D = %a ⊕ %I ⊕ %b be the state of the the quantum system

{H,HD = Ha ⊕HI ⊕Hb}
at t = −∞. By Definitions 0.1,0.2 it is a NESS (and even an ”ES”):

[HD, %D] = 0 .

• The systems are isolated at t = −∞ and then we connect them in a
time dependent manner the left- and right-hand reservoirs to the
closed quantum well {HI ,HI}.
• We assume that the connection process is described by the
time-dependent Hamiltonian

Hα(t) := H + e−αtδ(x− a) + e−αtδ(x− b), t ∈ R, α > 0.
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Time-dependent coupling I

• The operator Hα(t) is defined by

(Hα(t)f)(x) := −1
2

d

dx

1
M(x)

d

dx
f(x)+V (x)f(x), f ∈ dom(Hα(t)) .

• The domain dom(Hα(t)) is given by

dom(Hα(t)) :=




f ∈ W 1,2(R) :

1
M f ′ ∈ W 1,2(R)

( 1
2M f ′)(a + 0)− ( 1

2M f ′)(a− 0) = e−αtf(a)

( 1
2M f ′)(b + 0)− ( 1

2M f ′)(b− 0) = e−αtf(b)
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Time-dependent coupling II

THEOREM: One gets the following operator-norm convergence of
resolvents:

‖ · ‖ − lim
t→−∞

(Hα(t)− z)−1 = (HD − z)−1

and
‖ · ‖ − lim

t→+∞
(Hα(t)− z)−1 = (H − z)−1 ,

for any z ∈ C \ R.
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Density-matrix operator: time evolution

• We define a time-dependent density-matrix operator of the quantum
system with Hamiltonian Hα(t) as an operator-valued family:

R 3 t 7→ %α(t) ∈ B(W 1,2(R)),

(a) which is time-differentiable in the space B(W 1,2(R),W−1,2(R)) ;
(b) which is (weak) solution of the quantum Liouville equation:

i
∂

∂t
%α(t) = [Hα(t), %α(t)], t ∈ R,

satisfying (for any fixed α > 0) the initial (decoupling) condition

s- lim
t→−∞

%α(t) = %D.
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NESS for coupled system

Main strategy:

• Having found a solution %α(t) we are interested in the ergodic limit

%α = lim
T→+∞

1
T

∫ T

0

dt %α(t) .

• If we can verify that the limit %α exists and commutes with H , then
we regard the state %α as the desired NESS of the fully coupled
system {H,H}.
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Digression: The unitary evolution I

• Let R 3 t 7→ u(t) ∈ W 1,2(R) be weakly differentiable map.
• We are interested in the evolution equation

i
∂

∂t
u(t) = Hα(t)u(t), t ∈ R, α > 0.

where Hα(t) is regarded as a bounded operator acting from W 1,2(R)
into W−1,2(R).
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Digression: The unitary evolution II

THEOREM: There is a unique unitary solution operator, or
propagator {U(t, s)}(t,s)∈R×R, leaving invariant the Hilbert space
W 1,2(R) and such that:

∂

∂t
〈U(t, s)x, y〉 = −i〈Hα(t)U(t, s)x, y〉, x, y ∈ W 1,2(R),

∂

∂s
〈U(t, s)x, y〉 = i〈Hα(s)x, U(s, t)y〉, x, y ∈ W 1,2(R),

U(s, s) = 1.

H.Neidhardt and V.A.Zagrebnov : Linear non-autonomous Cauchy
problems and evolution semigroups. JEE (submitted)

19



Quantum Liouville equation

REMARKS:
• We note that relation:

%α(t) := U(t, s)%α(s)U(s, t), t, s ∈ R,

can be seen as a map from W 1,2(R) into W−1,2(R).
• Then it is differentiable.
• It solves the quantum Liouville equation satisfying the initial
condition %α(t)|t=s = %α(s), provided %α(s) leaves W 1,2(R)
invariant.
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Time-dependent scattering and the Liouville equation

PROPOSITION:
Let U(t) := U(t, 0), t ∈ R. Consider the wave operators

Ω− := s- lim
t→−∞

U(t)∗e−itHD

and
Ω+ := s- lim

t→+∞
U(t)∗e−itH .

• Then the both exist, and Ω+ is unitary.
• If the initial density-matrix condition is decoupled at t = −∞, then
one obtains:

%α(t) = U(t)Ω−%DΩ∗−U(t)∗, t ∈ R.
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Incoming (stationary) wave operator

Definition: We introduce the incoming wave operator by

W− := s- lim
t→−∞

eitHe−itHDP ac(HD)

where P ac(HD) is the projection on the absolutely continuous
subspace Hac(HD) of HD.
• Note that Hac(HD) = L2((−∞, a])⊕ L2([b,∞)).
• The wave operator exists and is complete, that is, W− is an isometric
operator acting from Hac(HD) onto Hac(H) , where Hac(H) is the
absolutely continuous subspace of H (the range of P ac(H)).
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The main result I

Theorem 0.4. Let EH(·) and {λj}N
j=1 be the spectral measure and

the eigenvalues of H . If %D is a steady state for the system {H,HD}
such that the operator %̂D := (HD + τ)4%D is bounded, then the limit

%α := s- lim
T→+∞

1
T

∫ T

0

dt%α(t)

= W−%DW ∗
− +

N∑

j=1

EH({λj})Sα%DS∗αEH({λj})

exists and defines a steady state for the coupled system {H,H} ,
where Sα := Ω∗+Ω−.
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Comments

• We stress that only the part corresponding to the pure point
spectrum %p

α :=
∑N

j=1 EH({Λj})Sα%DS∗αEH({λj}) of our NESS
depends on the parameter α > 0.
• The absolutely continuous part %ac

α := W−%DW ∗
− does not depend

on the parameter on α > 0.
• Note that with respect to the decomposition H = Hp(H)⊕ Hac(H),
one has %α = %p

α ⊕ %ac
α .
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More about the main result on Hac(H)

• On Hac(H) we have a stronger result :

Theorem 0.5. If %D is a steady state for the system {H, HD} such
that the operator %̂D := (HD + τ)4%D is bounded, then

s- lim
t→+∞

%α(t)P ac(H) = W−%DW ∗
−.
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Spectral representation

Corollary 0.6. With respect to the spectral representation
{L2(R, h(λ), ν),M} of H the distribution function {ρ̃α(λ)}λ∈R of
the steady state %α is given by

ρ̃α(λ) :=





0, λ ∈ R \ σ(H)

ρα,j , λ = λj , j = 1, . . . , N

fb(λ− µb), λ ∈ [vb, va)
fb(λ− µb) 0

0 fa(λ− µa)


 , λ ∈ [va,∞)

where ρα,j := 〈Sαφj , φj〉, j = 1, 2, . . . , N , va ≥ vb .
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The stationary current I

• Let η > 0, and choose an integer N ≥ 2. Denote by χb the
characteristic function of the interval (b,∞) (the right reservoir).

• Without loss of generality, we assume that H > 0.
Definition 0.7. The trace class operator

j(η) := i[H(1 + ηH)−N , χb]

is called the regularized current operator. The stationary current
coming out of the right reservoir is defined by

Iα := lim
η↘0

Tr(%αj(η)).

Aschbacher, W., Jakšić, V., Pautrat, Y., Pillet, C.-A.: ”Transport
properties of quasi-free fermions”, J. Math. Phys. 48, 032101 (2007)
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The stationary current II

• Let c > b + 1. Choose any function φc ∈ C∞(R) such that

0 ≤ φc ≤ 1, φc(x) = 1 if x ≥ c + 1, supp(φc) ⊂ (c− 1,∞).

• Then the stationary current is given by:

I =

iTr
{
W−%D(1 + HD)3W ∗

−P ac(H)(1 + H)−2[H,φc](1 + H)−1
}

= iTr
{
W−%DW ∗

−P ac(H)[H, φc]
}

.

• Problem : Compute the trace!
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The Landau-Lifschitz formula I

• We have computed the integral kernel of

A := iW−%DW ∗
−P ac(H)

1
2mb

(
− d

dx
φ′c − φ′c

d

dx

)

in the spectral representation of H .
• We obtain:

A(λ, p; λ′, p′) =

= − i%̃ac
D (λ)pp

2mb

∫

R
φ̃p(x, λ)

(
d

dx
φ′c(x) + φ′c(x)

d

dx

)
φ̃p′(x, λ′)dx

= − i%̃ac
D (λ)pp

2mb

∫

R
φ′c(x){φ̃p(x, λ)φ̃′p′(x, λ′)− φ̃′p(x, λ)φ̃p′(x, λ′)}dx.
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Main result: The Landau-Lifschitz formula II

• In order to compute the trace, we put λ = λ′, p = p′, and
integrate/sum over the variables.
• Then we obtain:

I =
∫

R
φ′c(x)j(x)dx,

where

j(x) :=
1

mb

∫ ∞

vb

∑
p

%̃ac
D (λ)pp={φ̃p(x, λ)φ̃′p(x, λ)}dλ.

• Density j(x) is a constant, depending only on invariant, scattering
quantities.
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The Landauer-Büttiker formula

... was obtained from Landau-Lifschitz formula in

Baro, M.; Kaiser, H.-Chr.; Neidhardt, H.; Rehberg, J: A quantum
transmitting Schrödinger-Poisson system, Rev. Math. Phys. 16
(2004), no. 3, 281–330.
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Further questions ?

1. the multidimensional case

2. . . .

THANK YOU FOR YOUR ATTENTION !
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