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What do we like to study? I

1. Two leads coupled through a quantum well: spectral analysis.
2. What is a NESS?
3. Time-dependent Liouville equation for density matrices.

4. Current formulae (Landau-Lifschitz, Landauer-Biittiker).



The model 1 .

e In ) := L*(R) we consider the self-adjoint Schrodinger operator
(Buslaev-Fomin ’62)

1d 1 d

S d M) de! W TV @ (@), v ER,

(Hf)(z) =

with domain

dom(H) := {f ¢ WH?(R) : %f’ c WH3(R)}.

e CONDITIONS: (a) The effective mass M (x) > 0 and the real
potential V (x) admit decompositions of the form (with v, > vy) :

( (

m, T € (—o0,al Vg T € (—00,al
M(z) := < m(z) =z € (a,b) V(z):=qv(z) z€(a,b)
w x € b, 0) . x € b, )




The model 11 '

(b) The function

c L>((a,0)),

and the quantum well potential : v € L*°((a,b)).

The quantum well is identified with the interval (a, b), (or physically,
with the three-dimensional layer (a,b) x R?).

The regions (—oo, a) and (b, co) (or physically (—oo, a) x R? and
(b, 00) x R?), are the reservoirs.



The model 111 .

e Besides 1ts mathematical attraction, the model can be also

interesting for:
I. Quantum well lasers.
2. Resonant tunneling diodes.
3. Nanotransistors.

Kirkner, D.; Lent, C.: The quantum transmitting boundary method, J.
Appl. Phys. 67 (1990), 6353-6359.

Vinter, B.; Weisbuch, C.: Quantum Semiconductor Structures:
Fundamentals and Applications. Academic Press, Boston, 1991.



What is (our) NESS? 1 I

Definition 0.1. We call a bounded, self-adjoint, non-negative
operator o in L*?(R) density-matrix operator or state, if the product
oM (X (ap)) is a trace-class operator. Here M (X (4 p)) is the
multiplication operator induced in L?(R) by the characteristic

function x (q.p) of any finite interval (a, b).

Definition 0.2. We call operator o a steady state for Hamilonian H,
if it commutes with H, i.e. if o belongs to the commutant A'(H) of the
algebra A(H) generated by the functional calculus associated to H.
A steady state is called an equilibrium state, if it belongs to the
bi-commutant A" (H ) of this algebra.



What is (our) NESS? 11 I

Proposition 0.3. [RMP’04] Since v, > vy, the operator H is
unitarily equivalent to the multiplication M induced by the
independent variable )\ in the direct integral of the spaces
L*(R,h(N),v) ~ @ C D L*([va, ve), C) ® L*((va, 00),C?)
where:

C, A& (—o0,v,]

b(A) = :
C?, X € (vy,00)
and the measure:
N
dv(N) =) (A = X)dA+ X[n,,00) (N)dA, A ER,
j=1

where {\; }j-V:l denote the finite number of simple eigenvalues of H,
which are all situated below the threshold vy,
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What is (our) NESS? 111 I

o If o, 1s a steady state for H, then there exists a v-measurable

function

R 3\ ju(N) € B(h(N)

of non-negative bounded operators on h(\) such that

v — supy¢r ||0st(A)||8(p(n)) < o0 and g, is unitarily equivalent to
the multiplication operator M (p) induced by p via a generalized
Fourier transform ® which makes H diagonal:

05t = DM (p)D.

o If 0., is an equilibrium state for H, then the corresponding p.,(\)
is proportional to the identity matrix: p.,(\) = a(\) - I, hence one

gets oo, = D (H).



Decoupled system I I

e We start with a completely decoupled system:
9a 1= L*((—00,a]),  97:=L*I), $y = L([b,0))

isolated quantum well Z = (a, b). Then the total Hilbert space is

direct sum:

ﬁ:ﬁa@ﬁI@g)b-

e With the subspace $), we associate the Hamiltonian H :

(Hof)z) = ———0 f@) +vuf(a).

 2m,, dx2

fe€dom(H,) = {fcW?*(~00,a)): f(a)=0}.




Decoupled system 11 I

e With $7 we associate the Hamiltonian of isolated quantum well Hz:

1d 1 d
L e wh2(7)
fe€dom(H7) == {feW?1):. ™
’ { fa) = f(b) =0 }
e With $H; we associate the Hamiltonian Hy:
1 d?
(Hpf)(z) = " o 4 f(x) + o f (),

f €dom(Hy) = {feW?2*((b,o0): f(b) =0}
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Decoupled system III I

e Hence in the space §) we have three isolated subsystems:
Hp =H,% Hr & H

e The quantum subsystems {$),, H,} and {$, Hp} are called left-
and right-hand reservoirs. The middle system {$)7, Hz} is identified
with a closed quantum well.

e We assume that all three subsystems are at (internal) thermal
equilibrium. Then according our Definitions, the corresponding
sub-states must be functions of their corresponding sub-Hamiltonians.

e The total (non-equilibrium ) state is direct sum of these three
sub-states: op := 0, D 07 B 0b.
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The initial state .

e According our Definitions 0.1 ,0.2 the thermal equilibrium
sub-states o, o7 and g, are the functions of corresponding
Hamiltonians :

0a = fa(Ha — pta), o1 :=fz(Hz — pz), 06 = fo(Hp — ).

e Physical examples for fermions with chemical potentials p,, (7, ity
one can take from: Frensley, W. R.: Boundary conditions for open
quantum systems driven far from equilibrium, Rev. Modern Phys. 62
(1990), 745-791, proposes

ii(A)i=c;In(1+e 7)), je{a,Z,b}

A € R, 8 :=1/T. The constants are given by ¢; := m;’f/h27r 3, where

the m;'f ’s are one dimensional effective masses. The initial state is:

0D ‘= 0q D 07 D 0».
12



NESS via time-dependent coupling I

e The main question: can we construct a NESS for {$), H } starting
from op?
o Let opp = 04 B 07 B 0p be the state of the the quantum system

{ﬁ?HD — Ha, D HI D Hb}
at t = —oo. By Definitions 0.1,0.2 it is a NESS (and even an "ES”):

[HDa QD] = 0.

e The systems are isolated at ¢ = —oo and then we connect them in a
time dependent manner the left- and right-hand reservoirs to the
closed quantum well {$7, Hz}.

e We assume that the connection process 1s described by the
time-dependent Hamiltonian

Ho(t):=H+e *§(x —a)+e “6(x—0b), teR, a>0.
13



Time-dependent coupling I I

e The operator H,(t) is defined by

(Ho(0)(@) 1= =5 437077 20 @V () (@), £ € dom(Ha (1)

e The domain dom(H,(%)) is given by

dom(H,(t)) :=

(

il e WI®)
fEWRR): (ghf)(a+0) = ()@= 0) = e f(a)
()6 +0) = (/)b —0) = e/ ()

N\

\
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Time-dependent coupling II I

THEOREM: One gets the following operator-norm convergence of

resolvents:

|-l = lim (Ha(t) —2)"" = (Hp—2)""

t——00

and
Il = lm (Ha(t) —2)"' = (H—2)"",

t——4o0

for any z € C \ R.
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Density-matrix operator: time evolution I

e We define a time-dependent density-matrix operator of the quantum
system with Hamiltonian H,,(t) as an operator-valued family:

R St — oq(t) € BWWY2(R)),

(a) which is time-differentiable in the space B(W2(R), W~ 1%(R)) ;
(b) which is (weak) solution of the quantum Liouville equation:

0

iaQa(t) — [HCX(t)?Qa(t)]? t € R,

satisfying (for any fixed a > 0) the initial (decoupling) condition

s- lim Qa(t) = 0D-

t——0o0
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NESS for coupled system I

e Having found a solution g, () we are interested in the ergodic limit

Main strategy:

1 T
L= lim — dt 0, (1) .
0 Tirile/O 0a(t)

e If we can verify that the limit g, exists and commutes with H, then
we regard the state g, as the desired NESS of the fully coupled

system {$), H }.
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Digression: The unitary evolution I I

eLetR >t — u(t) € WH2(R) be weakly differentiable map.

e We are interested in the evolution equation

z%u(t) = H,(t)u(t), teR, a>0.

where H, () is regarded as a bounded operator acting from W12 (R)
into W~ 1%(R).
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Digression: The unitary evolution II I

THEOREM: There is a unique unitary solution operator, or
propagator {U (t, 5) } (+,s)crxRr» leaving invariant the Hilbert space
W12(R) and such that:

(Ut s)z,y) = —i(Ha(O)U(t, 8)z,y),  ,y € WH(R),

(U(t,s)z,y) = i(Ha(s)2,U(s, t)y), 2,y € W(R),
Ul(s,s)=1.

0
ot
0
s

H.Neidhardt and V.A.Zagrebnov : Linear non-autonomous Cauchy

problems and evolution semigroups. JEE (submitted)
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Quantum Liouville equation I
REMARKS:

e We note that relation:
0a(t) :=U(t,s)oa(s)U(s,t), t,s€R,

can be seen as a map from W1 2(R) into W~ 12(R).

e Then it is differentiable.

e It solves the quantum Liouville equation satisfying the initial
condition 9, (t)|t=s = 0a(s), provided o, (s) leaves W12(R)
invariant.
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Time-dependent scattering and the Liouville equation I

PROPOSITION:
Let U(t) := U(t,0), t € R. Consider the wave operators
Q_ :=s- lim U(t)*e "o

t——o00

and

— <. i x —itH
Q4 =5 tlgrnoo Ul(t)"e .

e Then the both exist, and {2 is unitary.

e If the initial density-matrix condition is decoupled at ¢ = —oo, then
one obtains:

0a(t) =U®)Q_0pQ-Ut)*, teR.

21



Incoming (stationary) wave operator I

Definition: We introduce the incoming wave operator by

W_ = s- lim e "Ho poc(Hp)

t——00

where P%“(Hp) is the projection on the absolutely continuous
subspace H*“(Hp) of Hp.

e Note that H%¢(Hp) = L*((—o0,a]) ® L*([b, 0)).

e The wave operator exists and is complete, that 1s, I} _ is an isometric
operator acting from $H*°(Hp) onto $H*“(H) , where H°(H ) is the
absolutely continuous subspace of H (the range of P*“(H)).
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The main result I I

Theorem 0.4. Let Er(-) and {\;};_, be the spectral measure and
the eigenvalues of H. If op is a steady state for the system {$), Hp}
such that the operator 0p = (Hp + 7)*0p is bounded, then the limit

1 /T
Oa := s-_lim T/o dtoa(t)

T— 400

=W_opWZ* + ZEH({)\j})SaQDSZEH({)\j})

g=1

exists and defines a steady state for the coupled system {$, H} ,
where S, := Q7 ()_.
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Comments I

e We stress that only the part corresponding to the pure point
spectrum P, = Z;.V:l Erg({A;})SaopSEiEm({);}) of our NESS
depends on the parameter o > 0.

e The absolutely continuous part o%° := W_op W™ does not depend
on the parameter on o > 0.

e Note that with respect to the decomposition $ = HP(H) & H(H),
one has g, = 08 @ 05°.
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More about the main result on $H*°(H)

e On $H*“(H) we have a stronger result :

Theorem 0.5. If op is a steady state for the system {$), Hp } such
that the operator 0p = (Hp + 7)*0p is bounded, then

s- lim o, (t)P*“(H) = W_ppW?™.

t——+o0
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Spectral representation I

Corollary 0.6. With respect to the spectral representation
{L?(R,h(N),v), M} of H the distribution function {pa(\)} xer of
the steady state o, is given by

(0, AERN\ o(H)
Pa,js A:)\ja ]ZlaaN
Pa(A) = q Fo(A — 1p), A € |vb,vq)
A 0 |
fo(A — 1) A o, o0)
L 0 fa()‘_:ua)

—<Sa¢j,¢j>,j:1,2,...,N,Ua va.

=
=
S
N
o)
Q
<.
|
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The stationary current I I

e Let n > 0, and choose an integer NV > 2. Denote by ' the
characteristic function of the interval (b, co) (the right reservoir).

e Without loss of generality, we assume that A > 0.

Definition 0.7. The trace class operator
j(n) = i[HQ +nH)™", xy)

is called the regularized current operator. The stationary current

coming out of the right reservoir is defined by

Jo = Iim Tr(o,7 .
lim Tr(gaj (7))

Aschbacher, W., JakSic, V., Pautrat, Y., Pillet, C.-A.: "Transport
properties of quasi-free fermions”, J. Math. Phys. 48, 032101 (2007)
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The stationary current 11 I

e Let c > b+ 1. Choose any function ¢. € C'°°(R) such that

0<¢.<1, ¢clx)=1ifz>c+1, supp(¢.) C (c—1,00).

e Then the stationary current is given by:

¥ =
iTe {W_op(1+ Hp)*W*P*(H)(1 + H) *[H,¢.)(1 + H) "}
= iTr {W_opW*P*(H)[H, ¢.]} .

e Problem : Compute the trace!
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The Landau-Lifschitz formula I .

e We have computed the integral kernel of

1 d d
= . B *PCLC H T 7 / o / s
in the spectral representation of H.
e We obtain:
AN p; N, p')
i@CLC d )
— l;mbpp dp(z ( ¢ (z) + ¢ () w) S (2, N )d
,L'éac 3 ~ ~
gmb / ¢ )gb;?/ (ZE‘, )\/) o (/bgo(xv )\)pr/ (37, )\/)}dﬂj



Main result: The Landau-Lifschitz formula I1 .

e In order to compute the trace, we put A = X, p = p’, and
integrate/sum over the variables.
e Then we obtain:

where

j@)i=— [ Y 05 (NppS{dp(x. ), (2, A) }dA.

e Density j(x) is a constant, depending only on invariant, scattering

quantities.
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The Landauer-Biittiker formula .

... was obtained from Landau-Lifschitz formula in

Baro, M.; Kaiser, H.-Chr.; Neidhardt, H.; Rehberg, J: A quantum
transmitting Schrodinger-Poisson system, Rev. Math. Phys. 16
(2004), no. 3, 281-330.
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Further questions ? I

1. the multidimensional case

2. ...

THANK YOU FOR YOUR ATTENTION !
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