4th WORKSHOP on
 Mathematical Models for Transport in Macroscopic and Mesoscopic Systems
 WIAAS-Berlin, February 08-09, 2008

The effect of time-dependent coupling on non-equilibrium steady states

Valentin Zagrebnov
Université Aix-Marseille II - Luminy
Centre de Physique Théorique - UMR 6207

Joint work with H. Cornean (Department of Mathematical Sciences, University of Aalborg) and H. Neidhardt (WIAS-Berlin)

1. Two leads coupled through a quantum well: spectral analysis.
2. What is a NESS?
3. Time-dependent Liouville equation for density matrices.
4. Current formulae (Landau-Lifschitz, Landauer-Büttiker).

The model I

- In $\mathfrak{H}:=L^{2}(\mathbb{R})$ we consider the self-adjoint Schrödinger operator (Buslaev-Fomin '62)

$$
(H f)(x):=-\frac{1}{2} \frac{d}{d x} \frac{1}{M(x)} \frac{d}{d x} f(x)+V(x) f(x), \quad x \in \mathbb{R}
$$

with domain

$$
\operatorname{dom}(H):=\left\{f \in W^{1,2}(\mathbb{R}): \frac{1}{M} f^{\prime} \in W^{1,2}(\mathbb{R})\right\}
$$

- CONDITIONS: (a) The effective mass $M(x)>0$ and the real potential $V(x)$ admit decompositions of the form (with $v_{a} \geq v_{b}$):

$$
M(x):=\left\{\begin{array}{ll}
m_{a} & x \in(-\infty, a] \\
m(x) & x \in(a, b) \\
m_{b} & x \in[b, \infty)
\end{array} \quad V(x):= \begin{cases}v_{a} & x \in(-\infty, a] \\
v(x) & x \in(a, b) \\
v_{b} & x \in[b, \infty)\end{cases}\right.
$$

The model II

(b) The function

$$
m(x)+\frac{1}{m_{a(b)}} \in L^{\infty}((a, b))
$$

and the quantum well potential $: v \in L^{\infty}((a, b))$.
The quantum well is identified with the interval (a, b), (or physically, with the three-dimensional layer $(a, b) \times \mathbb{R}^{2}$).

The regions $(-\infty, a)$ and (b, ∞) (or physically $(-\infty, a) \times \mathbb{R}^{2}$ and $\left.(b, \infty) \times \mathbb{R}^{2}\right)$, are the reservoirs.

The model III

- Besides its mathematical attraction, the model can be also interesting for:

1. Quantum well lasers.
2. Resonant tunneling diodes.
3. Nanotransistors.

Kirkner, D.; Lent, C.: The quantum transmitting boundary method, J. Appl. Phys. 67 (1990), 6353-6359.

Vinter, B.; Weisbuch, C.: Quantum Semiconductor Structures:
Fundamentals and Applications. Academic Press, Boston, 1991.

What is (our) NESS? I

Definition 0.1. We call a bounded, self-adjoint, non-negative operator ϱ in $L^{2}(\mathbb{R})$ density-matrix operator or state, if the product $\varrho M\left(\chi_{(a, b)}\right)$ is a trace-class operator. Here $M\left(\chi_{(a, b)}\right)$ is the multiplication operator induced in $L^{2}(\mathbb{R})$ by the characteristic function $\chi_{(a, b)}$ of any finite interval (a, b).

Definition 0.2. We call operator ϱ a steady state for Hamilonian H, if it commutes with H, i.e. if ϱ belongs to the commutant $\mathfrak{A}^{\prime}(H)$ of the algebra $\mathfrak{A}(H)$ generated by the functional calculus associated to H. A steady state is called an equilibrium state, if it belongs to the bi-commutant $\mathfrak{A}^{\prime \prime}(H)$ of this algebra.

What is (our) NESS? II

Proposition 0.3. [RMP'04] Since $v_{a} \geq v_{b}$, the operator H is unitarily equivalent to the multiplication M induced by the independent variable λ in the direct integral of the spaces $L^{2}(\mathbb{R}, \mathfrak{h}(\lambda), \nu) \simeq \oplus_{j=1}^{N} \mathbb{C} \oplus L^{2}\left(\left[v_{a}, v_{b}\right], \mathbb{C}\right) \oplus L^{2}\left(\left(v_{a}, \infty\right), \mathbb{C}^{2}\right)$ where:

$$
\mathfrak{h}(\lambda):= \begin{cases}\mathbb{C}, & \lambda \in\left(-\infty, v_{a}\right] \\ \mathbb{C}^{2}, & \lambda \in\left(v_{a}, \infty\right)\end{cases}
$$

and the measure:

$$
d \nu(\lambda)=\sum_{j=1}^{N} \delta\left(\lambda-\lambda_{j}\right) d \lambda+\chi_{\left[v_{b}, \infty\right)}(\lambda) d \lambda, \quad \lambda \in \mathbb{R}
$$

where $\left\{\lambda_{j}\right\}_{j=1}^{N}$ denote the finite number of simple eigenvalues of H, which are all situated below the threshold v_{b}.

What is (our) NESS? III

- If $\varrho_{s t}$ is a steady state for H, then there exists a ν-measurable function

$$
\mathbb{R} \ni \lambda \mapsto \tilde{\rho}_{s t}(\lambda) \in B(\mathfrak{h}(\lambda))
$$

of non-negative bounded operators on $\mathfrak{h}(\lambda)$ such that
$\nu-\sup _{\lambda \in \mathbb{R}}\left\|\tilde{\rho}_{s t}(\lambda)\right\|_{\mathfrak{B}(\mathfrak{h}(\lambda))}<\infty$ and $\varrho_{s t}$ is unitarily equivalent to the multiplication operator $M(\tilde{\rho})$ induced by $\tilde{\rho}$ via a generalized Fourier transform Φ which makes H diagonal:

$$
\varrho_{s t}=\Phi^{-1} M(\tilde{\rho}) \Phi .
$$

- If $\varrho_{e q}$ is an equilibrium state for H, then the corresponding $\tilde{\rho}_{e q}(\lambda)$ is proportional to the identity matrix: $\tilde{\rho}_{e q}(\lambda)=\alpha(\lambda) \cdot \mathbb{I}$, hence one gets $\varrho_{e q}=\mathfrak{D}(H)$.

Decoupled system I

- We start with a completely decoupled system:

$$
\mathfrak{H}_{a}:=L^{2}((-\infty, a]), \quad \mathfrak{H}_{\mathcal{I}}:=L^{2}(\mathcal{I}), \quad \mathfrak{H}_{b}:=L^{2}([b, \infty))
$$

isolated quantum well $\mathcal{I}=(a, b)$. Then the total Hilbert space is direct sum:

$$
\mathfrak{H}=\mathfrak{H}_{a} \oplus \mathfrak{H}_{\mathcal{I}} \oplus \mathfrak{H}_{b} .
$$

- With the subspace \mathfrak{H}_{a} we associate the Hamiltonian H_{a} :

$$
\begin{aligned}
\left(H_{a} f\right)(x) & :=-\frac{1}{2 m_{a}} \frac{d^{2}}{d x^{2}} f(x)+v_{a} f(x), \\
f \in \operatorname{dom}\left(H_{a}\right) & :=\left\{f \in W^{2,2}((-\infty, a)): f(a)=0\right\}
\end{aligned}
$$

Decoupled system II

- With $\mathfrak{H}_{\mathcal{I}}$ we associate the Hamiltonian of isolated quantum well $H_{\mathcal{I}}$:

$$
\begin{aligned}
\left(H_{\mathcal{I}} f\right)(x) & :=-\frac{1}{2} \frac{d}{d x} \frac{1}{m(x)} \frac{d}{d x} f(x)+v(x) f(x), \\
f \in \operatorname{dom}\left(H_{\mathcal{I}}\right) & :=\left\{f \in W^{1,2}(\mathcal{I}): \begin{array}{l}
\frac{1}{m} f^{\prime} \in W^{1,2}(\mathcal{I}) \\
f(a)=f(b)=0
\end{array}\right\}
\end{aligned}
$$

- With \mathfrak{H}_{b} we associate the Hamiltonian H_{b} :

$$
\begin{aligned}
\left(H_{b} f\right)(x) & :=-\frac{1}{2 m_{b}} \frac{d^{2}}{d x^{2}} f(x)+v_{b} f(x) \\
f \in \operatorname{dom}\left(H_{b}\right) & :=\left\{f \in W^{2,2}((b, \infty): f(b)=0\}\right.
\end{aligned}
$$

Decoupled system IIII

- Hence in the space \mathfrak{H} we have three isolated subsystems:

$$
H_{D}:=H_{a} \oplus H_{\mathcal{I}} \oplus H_{b}
$$

- The quantum subsystems $\left\{\mathfrak{H}_{a}, H_{a}\right\}$ and $\left\{\mathfrak{H}_{b}, H_{b}\right\}$ are called leftand right-hand reservoirs. The middle system $\left\{\mathfrak{H}_{\mathcal{I}}, H_{\mathcal{I}}\right\}$ is identified with a closed quantum well.
- We assume that all three subsystems are at (internal) thermal equilibrium. Then according our Definitions, the corresponding sub-states must be functions of their corresponding sub-Hamiltonians.
- The total (non-equilibrium) state is direct sum of these three sub-states: $\varrho_{D}:=\varrho_{a} \oplus \varrho_{\mathcal{I}} \oplus \varrho_{b}$.

The initial state

- According our Definitions $0.1,0.2$ the thermal equilibrium sub-states $\varrho_{a}, \varrho_{\mathcal{I}}$ and ϱ_{b} are the functions of corresponding Hamiltonians :

$$
\varrho_{a}:=\mathfrak{f}_{a}\left(H_{a}-\mu_{a}\right), \quad \varrho_{\mathcal{I}}:=\mathfrak{f}_{\mathcal{I}}\left(H_{\mathcal{I}}-\mu_{\mathcal{I}}\right), \quad \varrho_{b}:=\mathfrak{f}_{b}\left(H_{b}-\mu_{b}\right)
$$

- Physical examples for fermions with chemical potentials $\mu_{a}, \mu_{\mathcal{I}}, \mu_{b}$ one can take from: Frensley, W. R.: Boundary conditions for open quantum systems driven far from equilibrium, Rev. Modern Phys. 62 (1990), 745-791, proposes

$$
\mathfrak{f}_{j}(\lambda):=c_{j} \ln \left(1+e^{-\beta \lambda}\right), \quad j \in\{a, \mathcal{I}, b\}
$$

$\lambda \in \mathbb{R}, \beta:=1 / T$. The constants are given by $c_{j}:=m_{j}^{*} / \hbar^{2} \pi \beta$, where the m_{j}^{*} 's are one dimensional effective masses. The initial state is:

$$
\varrho_{D}:=\varrho_{a} \oplus \varrho_{\mathcal{I}} \oplus \varrho_{b}
$$

NESS via time-dependent coupling

- The main question: can we construct a NESS for $\{\mathfrak{H}, H\}$ starting from ϱ_{D} ?
- Let $\varrho_{D}=\varrho_{a} \oplus \varrho_{\mathcal{I}} \oplus \varrho_{b}$ be the state of the the quantum system

$$
\left\{\mathfrak{H}, H_{D}=H_{a} \oplus H_{\mathcal{I}} \oplus H_{b}\right\}
$$

at $t=-\infty$. By Definitions $0.1,0.2$ it is a NESS (and even an "ES"):

$$
\left[H_{D}, \varrho_{D}\right]=0
$$

- The systems are isolated at $t=-\infty$ and then we connect them in a time dependent manner the left- and right-hand reservoirs to the closed quantum well $\left\{\mathfrak{H}_{\mathcal{I}}, H_{\mathcal{I}}\right\}$.
- We assume that the connection process is described by the time-dependent Hamiltonian

$$
H_{\alpha}(t):=H+e^{-\alpha t} \delta(x-a)+e^{-\alpha t} \delta(x-b), \quad t \in \mathbb{R}, \quad \alpha>0
$$

Time-dependent coupling I

- The operator $H_{\alpha}(t)$ is defined by

$$
\left(H_{\alpha}(t) f\right)(x):=-\frac{1}{2} \frac{d}{d x} \frac{1}{M(x)} \frac{d}{d x} f(x)+V(x) f(x), f \in \operatorname{dom}\left(H_{\alpha}(t)\right) .
$$

- The domain $\operatorname{dom}\left(H_{\alpha}(t)\right)$ is given by
$\operatorname{dom}\left(H_{\alpha}(t)\right):=$

$$
\left\{\begin{aligned}
& \frac{1}{M} f^{\prime} \in W^{1,2}(\mathbb{R}) \\
f \in W^{1,2}(\mathbb{R}): & \left(\frac{1}{2 M} f^{\prime}\right)(a+0)-\left(\frac{1}{2 M} f^{\prime}\right)(a-0)=e^{-\alpha t} f(a) \\
& \left(\frac{1}{2 M} f^{\prime}\right)(b+0)-\left(\frac{1}{2 M} f^{\prime}\right)(b-0)=e^{-\alpha t} f(b)
\end{aligned}\right.
$$

Time-dependent coupling II

THEOREM: One gets the following operator-norm convergence of resolvents:

$$
\|\cdot\|-\lim _{t \rightarrow-\infty}\left(H_{\alpha}(t)-z\right)^{-1}=\left(H_{D}-z\right)^{-1}
$$

and

$$
\|\cdot\|-\lim _{t \rightarrow+\infty}\left(H_{\alpha}(t)-z\right)^{-1}=(H-z)^{-1}
$$

for any $z \in \mathbb{C} \backslash \mathbb{R}$.

Density-matrix operator: time evolution

- We define a time-dependent density-matrix operator of the quantum system with Hamiltonian $H_{\alpha}(t)$ as an operator-valued family:

$$
\mathbb{R} \ni t \mapsto \varrho_{\alpha}(t) \in B\left(W^{1,2}(\mathbb{R})\right)
$$

(a) which is time-differentiable in the space $B\left(W^{1,2}(\mathbb{R}), W^{-1,2}(\mathbb{R})\right)$;
(b) which is (weak) solution of the quantum Liouville equation:

$$
i \frac{\partial}{\partial t} \varrho_{\alpha}(t)=\left[H_{\alpha}(t), \varrho_{\alpha}(t)\right], \quad t \in \mathbb{R}
$$

satisfying (for any fixed $\alpha>0$) the initial (decoupling) condition

$$
\text { s- } \lim _{t \rightarrow-\infty} \varrho_{\alpha}(t)=\varrho_{D}
$$

NESS for coupled system

Main strategy:

- Having found a solution $\varrho_{\alpha}(t)$ we are interested in the ergodic limit

$$
\varrho_{\alpha}=\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} d t \varrho_{\alpha}(t) .
$$

- If we can verify that the limit ϱ_{α} exists and commutes with H, then we regard the state ϱ_{α} as the desired NESS of the fully coupled system $\{\mathfrak{H}, H\}$.

Digression: The unitary evolution I

- Let $\mathbb{R} \ni t \mapsto u(t) \in W^{1,2}(\mathbb{R})$ be weakly differentiable map.
- We are interested in the evolution equation

$$
i \frac{\partial}{\partial t} u(t)=H_{\alpha}(t) u(t), \quad t \in \mathbb{R}, \quad \alpha>0
$$

where $H_{\alpha}(t)$ is regarded as a bounded operator acting from $W^{1,2}(\mathbb{R})$ into $W^{-1,2}(\mathbb{R})$.

Digression: The unitary evolution II

THEOREM: There is a unique unitary solution operator, or propagator $\{U(t, s)\}_{(t, s) \in \mathbb{R} \times \mathbb{R}}$, leaving invariant the Hilbert space $W^{1,2}(\mathbb{R})$ and such that:

$$
\begin{aligned}
\frac{\partial}{\partial t}\langle U(t, s) x, y\rangle & =-i\left\langle H_{\alpha}(t) U(t, s) x, y\right\rangle, \quad x, y \in W^{1,2}(\mathbb{R}) \\
\frac{\partial}{\partial s}\langle U(t, s) x, y\rangle & =i\left\langle H_{\alpha}(s) x, U(s, t) y\right\rangle, \quad x, y \in W^{1,2}(\mathbb{R}) \\
U(s, s) & =1
\end{aligned}
$$

H.Neidhardt and V.A.Zagrebnov : Linear non-autonomous Cauchy problems and evolution semigroups. JEE (submitted)

Quantum Liouville equation

REMARKS:

- We note that relation:

$$
\varrho_{\alpha}(t):=U(t, s) \varrho_{\alpha}(s) U(s, t), \quad t, s \in \mathbb{R}
$$

can be seen as a map from $W^{1,2}(\mathbb{R})$ into $W^{-1,2}(\mathbb{R})$.

- Then it is differentiable.
- It solves the quantum Liouville equation satisfying the initial condition $\left.\varrho_{\alpha}(t)\right|_{t=s}=\varrho_{\alpha}(s)$, provided $\varrho_{\alpha}(s)$ leaves $W^{1,2}(\mathbb{R})$ invariant.

Time-dependent scattering and the Liouville equation

PROPOSITION:

Let $U(t):=U(t, 0), t \in \mathbb{R}$. Consider the wave operators

$$
\Omega_{-}:=\mathrm{s}-\lim _{t \rightarrow-\infty} U(t)^{*} e^{-i t H_{D}}
$$

and

$$
\Omega_{+}:=\mathrm{s}_{t \rightarrow+\infty} \lim _{t \rightarrow} U(t)^{*} e^{-i t H}
$$

- Then the both exist, and Ω_{+}is unitary.
- If the initial density-matrix condition is decoupled at $t=-\infty$, then one obtains:

$$
\varrho_{\alpha}(t)=U(t) \Omega_{-} \varrho_{D} \Omega_{-}^{*} U(t)^{*}, \quad t \in \mathbb{R}
$$

Incoming (stationary) wave operator

Definition: We introduce the incoming wave operator by

$$
W_{-}:=\mathrm{s}_{t \rightarrow-\infty} \lim _{t \rightarrow}^{i t H} e^{-i t H_{D}} P^{a c}\left(H_{D}\right)
$$

where $P^{a c}\left(H_{D}\right)$ is the projection on the absolutely continuous subspace $\mathfrak{H}^{a c}\left(H_{D}\right)$ of H_{D}.

- Note that $\mathfrak{H}^{a c}\left(H_{D}\right)=L^{2}((-\infty, a]) \oplus L^{2}([b, \infty))$.
- The wave operator exists and is complete, that is, W_{-}is an isometric operator acting from $\mathfrak{H}^{a c}\left(H_{D}\right)$ onto $\mathfrak{H}^{a c}(H)$, where $\mathfrak{H}^{a c}(H)$ is the absolutely continuous subspace of H (the range of $P^{a c}(H)$).

The main result I

Theorem 0.4. Let $E_{H}(\cdot)$ and $\left\{\lambda_{j}\right\}_{j=1}^{N}$ be the spectral measure and the eigenvalues of H. If ϱ_{D} is a steady state for the system $\left\{\mathfrak{H}, H_{D}\right\}$ such that the operator $\widehat{\varrho}_{D}:=\left(H_{D}+\tau\right)^{4} \varrho_{D}$ is bounded, then the limit

$$
\begin{aligned}
\varrho_{\alpha} & :=\mathrm{s}-\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} d t \varrho_{\alpha}(t) \\
& =W_{-} \varrho_{D} W_{-}^{*}+\sum_{j=1}^{N} E_{H}\left(\left\{\lambda_{j}\right\}\right) S_{\alpha} \varrho_{D} S_{\alpha}^{*} E_{H}\left(\left\{\lambda_{j}\right\}\right)
\end{aligned}
$$

exists and defines a steady state for the coupled system $\{\mathfrak{H}, H\}$, where $S_{\alpha}:=\Omega_{+}^{*} \Omega_{-}$.

Comments

- We stress that only the part corresponding to the pure point spectrum $\varrho_{\alpha}^{p}:=\sum_{j=1}^{N} E_{H}\left(\left\{\Lambda_{j}\right\}\right) S_{\alpha} \varrho_{D} S_{\alpha}^{*} E_{H}\left(\left\{\lambda_{j}\right\}\right)$ of our NESS depends on the parameter $\alpha>0$.
- The absolutely continuous part $\varrho_{\alpha}^{a c}:=W_{-} \varrho_{D} W_{-}^{*}$ does not depend on the parameter on $\alpha>0$.
- Note that with respect to the decomposition $\mathfrak{H}=\mathfrak{H}^{p}(H) \oplus \mathfrak{H}^{a c}(H)$, one has $\varrho_{\alpha}=\varrho_{\alpha}^{p} \oplus \varrho_{\alpha}^{a c}$.

More about the main result on $\mathfrak{H}^{a c}(H)$

- On $\mathfrak{H}^{a c}(H)$ we have a stronger result :

Theorem 0.5. If ϱ_{D} is a steady state for the system $\left\{\mathfrak{H}, H_{D}\right\}$ such that the operator $\widehat{\varrho}_{D}:=\left(H_{D}+\tau\right)^{4} \varrho_{D}$ is bounded, then

$$
\text { s- } \lim _{t \rightarrow+\infty} \varrho_{\alpha}(t) P^{a c}(H)=W_{-} \varrho_{D} W_{-}^{*}
$$

Spectral representation

Corollary 0.6. With respect to the spectral representation $\left\{L^{2}(\mathbb{R}, \mathfrak{h}(\lambda), \nu), M\right\}$ of H the distribution function $\left\{\tilde{\rho}_{\alpha}(\lambda)\right\}_{\lambda \in \mathbb{R}}$ of the steady state ϱ_{α} is given by
$\tilde{\rho}_{\alpha}(\lambda):= \begin{cases}0, & \lambda \in \mathbb{R} \backslash \sigma(H) \\ \rho_{\alpha, j}, & \lambda=\lambda_{j}, \quad j=1, \ldots, N \\ \mathfrak{f}_{b}\left(\lambda-\mu_{b}\right), & \lambda \in\left[v_{b}, v_{a}\right) \\ \left(\begin{array}{cc}\mathfrak{f}_{b}\left(\lambda-\mu_{b}\right) & 0 \\ 0 & \mathfrak{f}_{a}\left(\lambda-\mu_{a}\right)\end{array}\right), & \lambda \in\left[v_{a}, \infty\right)\end{cases}$
where $\rho_{\alpha, j}:=\left\langle S_{\alpha} \phi_{j}, \phi_{j}\right\rangle, j=1,2, \ldots, N, v_{a} \geq v_{b}$.

The stationary current I

- Let $\eta>0$, and choose an integer $N \geq 2$. Denote by χ_{b} the characteristic function of the interval (b, ∞) (the right reservoir).
- Without loss of generality, we assume that $H>0$.

Definition 0.7. The trace class operator

$$
j(\eta):=i\left[H(1+\eta H)^{-N}, \chi_{b}\right]
$$

is called the regularized current operator. The stationary current coming out of the right reservoir is defined by

$$
\mathfrak{I}_{\alpha}:=\lim _{\eta \backslash 0} \operatorname{Tr}\left(\varrho_{\alpha} j(\eta)\right)
$$

Aschbacher, W., Jakšić, V., Pautrat, Y., Pillet, C.-A.: '’Transport properties of quasi-free fermions", J. Math. Phys. 48, 032101 (2007)

The stationary current II

- Let $c>b+1$. Choose any function $\phi_{c} \in C^{\infty}(\mathbb{R})$ such that

$$
0 \leq \phi_{c} \leq 1, \quad \phi_{c}(x)=1 \text { if } x \geq c+1, \quad \operatorname{supp}\left(\phi_{c}\right) \subset(c-1, \infty)
$$

- Then the stationary current is given by:
$\mathfrak{I}=$
$i \operatorname{Tr}\left\{W_{-} \varrho_{D}\left(1+H_{D}\right)^{3} W_{-}^{*} P^{a c}(H)(1+H)^{-2}\left[H, \phi_{c}\right](1+H)^{-1}\right\}$
$=i \operatorname{Tr}\left\{W_{-} \varrho_{D} W_{-}^{*} P^{a c}(H)\left[H, \phi_{c}\right]\right\}$.
- Problem : Compute the trace!

The Landau-Lifschitz formula I

- We have computed the integral kernel of

$$
\mathcal{A}:=i W_{-} \varrho_{D} W_{-}^{*} P^{a c}(H) \frac{1}{2 m_{b}}\left(-\frac{d}{d x} \phi_{c}^{\prime}-\phi_{c}^{\prime} \frac{d}{d x}\right)
$$

in the spectral representation of H.

- We obtain:

$$
\begin{aligned}
& \mathcal{A}\left(\lambda, p ; \lambda^{\prime}, p^{\prime}\right)= \\
& =-\frac{i \tilde{\varrho}_{D}^{a c}(\lambda)_{p p}}{2 m_{b}} \int_{\mathbb{R}} \overline{\tilde{\phi}_{p}(x, \lambda)}\left(\frac{d}{d x} \phi_{c}^{\prime}(x)+\phi_{c}^{\prime}(x) \frac{d}{d x}\right) \tilde{\phi}_{p^{\prime}}\left(x, \lambda^{\prime}\right) d x \\
& =-\frac{i \tilde{\varrho}_{D}^{a c}(\lambda)_{p p}}{2 m_{b}} \int_{\mathbb{R}} \phi_{c}^{\prime}(x)\left\{\overline{\tilde{\phi}_{p}(x, \lambda)} \tilde{\phi}_{p^{\prime}}^{\prime}\left(x, \lambda^{\prime}\right)-\overline{\tilde{\phi}_{p}^{\prime}(x, \lambda)} \tilde{\phi}_{p^{\prime}}\left(x, \lambda^{\prime}\right)\right\} d x .
\end{aligned}
$$

Main result: The Landau-Lifschitz formula II

- In order to compute the trace, we put $\lambda=\lambda^{\prime}, p=p^{\prime}$, and integrate/sum over the variables.
- Then we obtain:

$$
\mathfrak{I}=\int_{\mathbb{R}} \phi_{c}^{\prime}(x) j(x) d x
$$

where

$$
j(x):=\frac{1}{m_{b}} \int_{v_{b}}^{\infty} \sum_{p} \tilde{\varrho}_{D}^{a c}(\lambda)_{p p} \Im\left\{\overline{\tilde{\phi}_{p}(x, \lambda)} \tilde{\phi}_{p}^{\prime}(x, \lambda)\right\} d \lambda .
$$

- Density $j(x)$ is a constant, depending only on invariant, scattering quantities.

The Landauer-Büttiker formula

... was obtained from Landau-Lifschitz formula in
Baro, M.; Kaiser, H.-Chr.; Neidhardt, H.; Rehberg, J: A quantum transmitting Schrödinger-Poisson system, Rev. Math. Phys. 16 (2004), no. 3, 281-330.

Further questions?

1. the multidimensional case
2. ...

THANK YOU FOR YOUR ATTENTION!

