

Quantum scaling behavior of nanotransistors

Ulrich Wulf

Brandenburgische Technische Universität Cottbus

In cooperation with P. N. Racec, E. R. Racec, G. A. Nemnes, J. Kucera, D. Robaschik, M. Krahlisch, M. Käso

> A contribution to the 4th Workshop for Mathematical Models for Transport in Macroscopic and Mesoscopic Systems Berlin, February 2008

Organization of the talk

- I Introduction
- **II** One-dimesional effective problem
- **III** Scale-invariant description
- IV I-V-curves in dependence of dimensionless parameters

screening

One-dimensional effective problem

$$\begin{bmatrix} -\frac{\hbar^2}{2m^*} \frac{d^2}{dy^2} + V^{eff}(y) - \epsilon \end{bmatrix} \phi(y) = 0,$$

$$V^{eff}(y) = \begin{cases} 0, & \text{for } y < -d \\ V_0 + V^F(y), & \text{for } -d \le y \le d \\ -eU_{DS}, & \text{for } y > d. \end{cases}$$

One-dimensional effective problem

$$\begin{bmatrix} -\frac{\hbar^2}{2m^*} \frac{d^2}{dy^2} + V^{eff}(y) - \epsilon \end{bmatrix} \phi(y) = 0,$$

$$V^{eff}(y) = \begin{cases} 0, & \text{for } y < -d \\ V_0 + V^F(y), & \text{for } -d \le y \le d \\ -eU_{DS}, & \text{for } y > d. \end{cases}$$

$$I = \frac{2e}{h} \int_0^\infty d\epsilon \left[f\left(\frac{\epsilon - \mu}{kT}\right) - f\left(\frac{\epsilon - \mu + eU_{DS}}{kT}\right) \right] \quad T^{eff}(\epsilon).$$

• ϕ are scattering states $\phi^{S/D}$

$$\phi^{S}(\epsilon, y) = \begin{cases} r^{S} \exp\left[-ik_{S}^{eff}(y+d) + \exp\left[ik_{S}^{eff}(y+d)\right] & \text{for } y < -d \\ \\ t^{S} \exp\left[ik_{D}^{eff}(y-d)\right] & \text{for } y > d. \end{cases}$$

•
$$k_S^{eff} = \sqrt{2m/\epsilon}/\hbar$$
 and $k_D^{eff} = \sqrt{2m(\epsilon + eU_{DS})}/\hbar$

• current transmission $T^{eff} = k_S^{eff} (k_D^{eff})^{-1} \mid t^S \mid^2$

Scale-invariant representation of the Schrödinger equation

$$\left(-\frac{1}{\beta}\frac{d^2}{d\hat{y}^2} + \hat{v}^{eff} - \hat{\epsilon}\right)\phi(\hat{y}) = 0$$

•
$$\hat{y} = y + d/(2d)$$
 $\hat{\epsilon} = \epsilon/V_0$ $\hat{v}_{ds} = -eU_{DS}/V_0$ $\beta = \frac{2m^*}{\hbar^2}V_0d^2$.

Scale-invariant representation of the Schrödinger equation

$$\left(-\frac{1}{\beta}\frac{d^2}{d\hat{y}^2} + \hat{v}^{eff} - \hat{\epsilon}\right)\phi(\hat{y}) = 0$$

• $\hat{y} = y + d/(2d)$ $\hat{\epsilon} = \epsilon/V_0$ $\hat{v}_{ds} = -eU_{DS}/V_0$ $\beta = \frac{2m^*}{\hbar^2}V_0d^2$.

Transmission for fixed $\beta = 1000$ and $\hat{v}_{ds} = 0.5$

three parameters d, V $_{0}$, and V $_{DS}$

two dimensionless parameters β , \widehat{v}_{ds}

Transmission for fixed $\beta = 1000$ and $\hat{v}_{ds} = 0.5$

$$T = T_{V_0,d,U_{DS}}(E) \to \hat{T} = \hat{T}_{\beta,\hat{v}_{ds}}(\hat{\epsilon}).$$

The scale-invariant current

$$I = \frac{2e^2}{h} V_0 \int_0^\infty d\hat{\epsilon} \left[f\left(\frac{\hat{\epsilon} - \hat{\mu}}{\hat{t}}\right) - f\left(\frac{\hat{\epsilon} - \hat{\mu} + \hat{v}_{ds}}{\hat{t}}\right) \right] \hat{T}(\hat{\epsilon})$$
(1)

$$\hat{\mu} = \frac{\mu}{V_0}, \qquad \hat{t} = \frac{kT}{V_0},$$

The scale-invariant current

$$I = \frac{2e^2}{h} V_0 \int_0^\infty d\hat{\epsilon} \left[f\left(\frac{\hat{\epsilon} - \hat{\mu}}{\hat{t}}\right) - f\left(\frac{\hat{\epsilon} - \hat{\mu} + \hat{v}_{ds}}{\hat{t}}\right) \right] \hat{T}(\hat{\epsilon})$$
(2)

$$\hat{\mu} = \frac{\mu}{V_0}, \qquad \hat{t} = \frac{kT}{V_0},$$

The scale-invariant current

$$I = \frac{2e^2}{h} V_0 \int_0^\infty d\hat{\epsilon} \left[f\left(\frac{\hat{\epsilon} - \hat{\mu}}{\hat{t}}\right) - f\left(\frac{\hat{\epsilon} - \hat{\mu} + \hat{v}_{ds}}{\hat{t}}\right) \right] \hat{T}(\hat{\epsilon}),$$

$$= I_0 (1 - v_g) \int_0^\infty d\hat{\epsilon} \left[f\left(\frac{\hat{\epsilon} - 1 - \hat{v}_g}{\hat{t}}\right) - f\left(\frac{\hat{\epsilon} - 1 - \hat{v}_g + \hat{v}_{ds}}{\hat{t}}\right) \right] \hat{T}(\hat{\epsilon})$$

• Introduce Gate bias V_G for I-V chart $I(V_G, V_{DS})$:

$$V_G = \mu - V_0 \Rightarrow \hat{v}_g = \hat{\mu} - 1$$

• Energy-normalization μ (independent of V_G and V_{DS})

$$v_g = \frac{V_G}{\mu} \Rightarrow \hat{v}_g = \frac{v_g}{1 - v_g}$$

• Current normalization $I_0 = \frac{2e^2}{h}\mu$ \Rightarrow maximum current for given V_G, V_{DS} at T = 0, if $T(\epsilon) = 1$.

Dimensionless formulation

$$I/I_0 = (1 - v_g) \int_0^\infty d\hat{\epsilon} \left[f\left(\frac{\hat{\epsilon} - 1 - \hat{v}_g}{\hat{t}}\right) - f\left(\frac{\hat{\epsilon} - 1 - \hat{v}_g + \hat{v}_{ds}}{\hat{t}}\right) \right] \hat{T}_{\beta\hat{v}_{ds}}(\hat{\epsilon})$$

$$= F(\beta^{th}, t, v_{ds}, v_g)$$

$$t = \frac{kT}{\mu} \Rightarrow \hat{t} = \frac{t}{1 - v_g},$$
$$v_g = \frac{V_G}{\mu} \Rightarrow \hat{v}_g = \frac{v_g}{1 - v_g}$$
$$v_{ds} = \frac{V_{DS}}{\mu} \Rightarrow \hat{v}_{ds} = \frac{v_{ds}}{1 - v_g}.$$

barrier parameter $\beta^{th}=2m^*\mu d^2/\hbar^2$

$$\beta = \frac{2m^*}{\hbar^2} (\mu - V_G) d^2 = \beta^{th} (1 - v_g).$$

Typical values for dimensionless parameters

 n^{++} -Si contacts: Ideal non-interacting 3D-Fermi gas, T = 0, valleydegeneracy $N_V = 6$, effective mass $m^* = 0.32m_0$, maximum doping $n = N_D = 10^{21} cm^{-3}$

$$\mu \to E_F = \frac{\hbar^2}{2m^*} \left(\frac{n}{N_V}\right)^{2/3} \left(3\pi^2\right)^{2/3} = 0.34eV \left[\frac{N_D}{10^{21} cm^{-3}}\right]^{2/3}$$

$$\beta^{th} = \frac{2m^*}{\hbar^2} E_F d^2$$

$$d = 10nm \quad N_D = 10^{21} cm^{-3} \quad \Rightarrow \beta^{th} = 135$$

$$d = 30nm \quad N_D = 10^{21} cm^{-3} \quad \Rightarrow \beta^{th} = 1200$$

Furthermore

$$I_0 = \frac{2e^2}{h}\mu = 78\mu A \times \mu[eV]$$

Drain characteristics, strong Barriere, $T \rightarrow 0$

B. J. van Wees et al. Phys.Rev. Lett. 60, 848 (1988)

Comparison between stronger- and weaker barrier

The threshold resistance

Subtheshold charakteristic

O Drain current dependence

classical model (drift-diffusion)

-'short channel effects'-'Punsh through' between source- and drain depletion zone

quantum model:

drain bias dependence of tunneling quantum short channel efect

By increasing β^{th}

quantum short-channel effects

can be reduced

Discussion

B. Doyle et. al., Intel Technology Journal 6, 42 (2002)

Conclusion

I Effectively one-dimensional problem

• SMAT = single mode, abrupt transition

II Scale-invariant description of transport

• Dimensionless barrier strength parameter

$$\beta^{th} = 2m^* \mu d^2 / \hbar^2$$

III I-V curves in dependence of β^{th}

- \bullet In agreement with INTEL-transistor: linear threshold charakteristik R^{th}
- \bullet 'Quantum short-channel effects' reduced with increasing β^{th}