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The problem (W)
H=P-A)?2+V, L?(RY),
oo C o(H)-bounded & isolated,

Py- corresponding spectral projector,
K = PyL?(R%)

Find an orth. basisin K, {wg j}ecr 1<i<m(g)<M<oo:
e I'- discrete set in L2(R%), a > 0,

o [|wg ;(x—g)|2e2¥*"8ldx < C' < o0

Additional requirements

e Symmetries:

time reversal: [H, K] =0, Kf(x) = f(x)

Kwg ; = wg ;- real Wannier functions.
translations:

r=2% V(x+n) =V(x), Tnf(x) = f(x —n),

[HaTH] — O

wg (x) = Tgwg j(x) = wp ;(x — &)



e Optimal localization: which is the largest «
i.e. which is the quickest exponential decay.

e T he spreading of Wannier functions: max-
imal localization, very important for compu-
tational purposes (Marzari & Vanderbilt 97)

Ifll =1, ((AA)2) = (f, (A= (f,AF))?S)
((AX)2>wg’j ~as small as possible.
Non-triviality

For A %= O the problem (W) may not have a
solution (Novikov 1981, Thouless 1984).

T he main conjecture

For real V(x) and A = 0 the problem (W)
has always a solution.

e [ he uniqueness problem.



Construction of Wannier functions:
the periodic case (Wannier 1937)

Bloch functions: H = EBdek, B = {k|k; €
[—m,m)} (Brillouin zone), ¥, 1(x) = u,, ,(x)eX,
Uup k(xX) =u, x(x+g), n=1,2,..,

Hyp, x = En(K)v, k

Suppose Eny(k) is nondegenerate for k € B
(simple band):

wgo () = (2m) 7 | by (e M Edk

The main point (Paley-Wiener theorem):

exponential decay of wg? < ok analytic
and periodic in k



e T he Bloch functions are defined by the
eigenvalue problem up to a phase factor (non-
uniqueness of Wannier functions):

wno,k — X(k){b/no,k

e \Wannier functions for composite band i.e.
a group of intersecting bands Ej (k), | =
1,2,...N,N < oo isolated for all k from the
rest of the spectrum.

g () = 277 |35k (06 Rk

Questions: i. Can one chose x(k) as to
make ¢no,k analytic and periodic in k7.

ii. What choice leads to optimally/maximally
localized wg®?

Answer: Yes for i. Partial answers for ii.
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Non-periodic systems: the quasi
one-dimensional case

e In (quasi) one dimension (W) has a solu-
tion with real, optimally and maximally lo-
calized (generalized) Wannier functions (i.e.
the main conjecture holds true for one quasi
dimensional systems).

e Main open problem. Prove the main con-
jecture in higher dimensions.

e How to define Wannier functions (one can-
not use the Bloch functions!)

e T he way out in the one dimensional case:
Kivelson 82, Niu 91; mathematical substan-
tiation: A. Nenciu & N 98.



T he main results
H=P24+V; L?2(R3); x = (z1,x).

Iy (R) = SUP, er;x, > R Jx—yl<1 |V (¥)]%dy
Iv(Ro) < oo; lIMp_ s Iv(R) =0

00 € (—=00,0), —E4 =sup{E: Ecop} <O
K =Ran(Py);, Pop= %f,—(H —2)"1ldz

ga(x) = \/(331 - a)2 +1; g, (x) = \/|XL|2 + 1.
Proposition 1. There exist o > O, oy >0,

M < oo such that:

sup || €190 poe=19) | < M, and
acR

| e@191(0) pye®191() < M.



Theorem 2. Let XH be the operator of mul-
tiplication with z1 in L?(R3) and consider
in C the operator X| := PoX| Py defined on
D(XH) - D(XH) NJC. Then

i X’H is self-adjoint on D(XH);

. X” has purely discrete spectrum;

ii. Let g € G = J(X”) be an eigenvalue,
mg its multiplicity, and {Wy j}1<j<m, an or-
thonormal basis in the eigenspace of X cor-
responding to g. Then for all 3 € [0, 1], there
exists My < oo independent of g, 3 and 3 such
that:

/]1%3 ezﬂ_ﬁ)o‘ll|x1_g|6250‘l|xi||Wg,j(x)|2dx < My,

where Q| and o are the same exponents as
for Py,

iv. Letae€ R and L > 1. Denote by N(a,L)
the total multiplicity of the spectrum of X’H
contained in [a — L,a-+ L]. Then there exists
Mo < oo such that

N(a,L) < My - L.



Further properties

e Optimal exponential decay
Proposition 3. Assume that for all a < ag
we are given an a priori bound
sup || e9a() ppe=9a() ||< M, and
acR
Then for all « < ag there exists My («),independent
of g and j5 such that

/R3 e2ele1=l| W, (x)[2dx < My(a).

e Uniqueness: Up to uninteresting phases.

e Reality: One can choose W, ;(x) = W, ;(x)



e Screw symmetry:
x, =(r0), r>0,
0 c€[0,2m); V(zq,r,0) =V(zx1+ 1,70+ 0p)

(T2 £)(z1,7,60) = f(z1 —n,7,60 — nbp).

Proposition 4. T he spectrum of X’H consists
of a union of p ladders:

G=U§:1Gj, Gi={9: g=gjtn, neZ}, je{l,2

and an orthonormal basis in IC can be chosen
as:

o . 7Y%
Wn,gj,aj . — Wg]—l—n,oz] . — T?”L ng,aj,

ne’,je{l,2,..,p}, aj €41,2, ...,mgj}.
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Main result: the periodic case

Abstract problem (C) (des Cloizeaux 64, N
83,91)

H, 7% = {z € C%|3z| < a}, Q(z)- projection
valued function in Z¢:

Q(z) = Q*(2), Q(z) = Q(z+ p) for p € Z.

Find A(z) : H — H analytic in Z¢ satisfying
A(0) =1, A71(z) = 4%(2), Q(z) = A(z2)Q(0)A~1(2),
A(z)Q(0) = A(z + p)Q(0)

o If problem (C) has a solution then for
{fm}?'mQO basis in Q(0)H, {A(z)fm}?'mQO is

an analytic and periodic basis in Q(z)H.

e The existence of a solution of (C) <—
triviality of the fiber bundle Q(z) (N 91).
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Theorem 5. (Kohn 58, des Cloizeaux 64; N
83,91, Helffer & Sjostrand 89; Panati 06)

i. In the cases below the problem (C) has
solutions. In addition a solution leading to
real, translation invariant, optimally localized
Wannier functions has been constructed.

a. d=1

b. sup,c74[Q(2) — Q(O)] < 1

c. dimQ@Q(0) = 1 and there exists an an-
tiunitary involution 0 : 'H — 'H such that

0Q(2)0 = Q(—2)

ii. For d = 2,3, dimQ@Q(0) < oo and there
exists an antiunitary involution 0 : H — H
such that 0Q(z)0 = Q(—z) the problem (C)
has solutions.
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Open problems in the periodic case

e Generalize Theorem 1ii to arbitrary dimen-
sions (if truel!).

e Find a constructive proof of Theorem 1ii.

e Construct maximally localized Wannier func-
tions. Are maximally localized functions among
the optimally localized ones. For details and
some partial results: Marzari & Vanderbild
oT.

e Not discussed: magnetic field case (see
Nenciu 1991).
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