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1. Motivation 1

Derive models in reduced dimension for the transport of a quantum electron

gas confined in a nanostructure.

Charge density in a quantum coupler Silicom nanowire



1. Motivation 2

The gas is free to move in the transport directions x ∈ R
N but tightly confined in

the transversal confinement directions z ∈ R
d, N + d = 3.

Two situations :

➠ 2DEG = confinement on a plane, N = 2, d = 1, e.g. layer on electrons in a

MOSFET, on a graphene surface, in a quantum well,...

➠ 1DEG = confinement on a line, N = 1, d = 2, e.g. nanowire.

Mathematical tool : asymptotic analysis for a singularly perturbed 3D

Schrödinger-Poisson system.

Typical question : what is the form of the Poisson nonlinearity in the reduced

model ?
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2. Scaling and qualitative behavior 4

THE SINGULARLY PERTURBED SCHRÖDINGER-POISSON SYSTEM

i∂tψ = −∆xψ − ∆zψ +
1

ε2
Vc

(z

ε

)

ψ + V ψ

V =
1

4π
√

|x|2 + |z|2
∗ |ψ|2

where Vc is a given smooth positive function and Vc → +∞ as |z| → +∞
The small parameter ε is the extension of the electron gas in the z direction.
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i∂tψ = −∆xψ − ∆zψ +
1

ε2
Vc

(z

ε

)

ψ + V ψ

V =
1

4π
√

|x|2 + |z|2
∗ |ψ|2

where Vc is a given smooth positive function and Vc → +∞ as |z| → +∞
The small parameter ε is the extension of the electron gas in the z direction.

Rescaling (L2 invariant) : z′ =
z

ε
, t′ = t , x′ = x

ψ(t, x, z) =
1

εd/2
ψ′
(

t, x,
z

ε

)



2. Scaling and qualitative behavior 5

THE RESCALED SYSTEM

i∂tψ
ε = −∆xψ

ε +
1

ε2
Hzψ

ε + V εψε with Hz = −∆z + Vc

V ε =
1

4π
√

|x|2 + ε2|z|2
∗ |ψε|2

Initial data : ψ(t = 0) = ψ0 in the energy space

H =
{

u ∈ H1(R3) such that
√

Vc u ∈ L2(R3)
}

Qualitative behavior :

➠ oscillations in time coming from i∂t =
1

ε2
Hz

➠ the Poisson potential V ε tends to be independent of z



2. Scaling and qualitative behavior 6

THE FILTERED SYSTEM

It is convenient to filter out the oscillations in time and consider φε = eitHz/ε2

ψε

i∂tφ
ε = −∆xφ

ε + e+itHz/ε2

V εe−itHz/ε2

φε

V ε =
1

4π
√

|x|2 + ε2|z|2
∗
∣

∣

∣
e−itHz/ε2

φε
∣

∣

∣

2
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2

ε→ 0 : one has to distinguish the 2DEG (x ∈ R
2) and 1DEG (x ∈ R) cases.

➠ 2DEG : V ε ∼ 1

4π|x| ∗
∣

∣

∣
eitHz/ε2

φε
∣

∣

∣

2

which is well defined,

➠ 1DEG : problem since
1

|x| is not integrable !



3. The 2DEG 7

Theorem. Let ψ0 ∈ H. Then, as ε→ 0, the filtered function φε converges

locally uniformly in time in the H topology to the solution φ of the following

system :

i∂tφ = −∆xφ+ V φ , φ(t = 0) = ψ0 ,

V =
1

4π|x| ∗x

〈

|φ|2
〉

,

where 〈·〉 denotes the integral over the transversal variable
∫

R
·dz.
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Theorem. Let ψ0 ∈ H. Then, as ε→ 0, the filtered function φε converges

locally uniformly in time in the H topology to the solution φ of the following

system :

i∂tφ = −∆xφ+ V φ , φ(t = 0) = ψ0 ,

V =
1

4π|x| ∗x

〈

|φ|2
〉

,

where 〈·〉 denotes the integral over the transversal variable
∫

R
·dz.

Remark. The dynamics is 2D, as expected, but the Poisson kernel is not the 2D

Poisson kernel. It keeps track of the third dimension : if u = u(x) then

1

4π|x| ∗x u =
1

4π
√

|x|2 + |z|2
∗ (u(x)δz=0)

∣

∣

∣

∣

∣

z=0



3. The 2DEG 8

COME-BACK TO THE INITIAL FUNCTION

The operator Hz has a discrete spectrum. Denote by (Ep)p∈N its eigenvalues

and by (χp)p∈N its eigenfunctions. The solution of the initial system (before

rescaling and filtering) can be written asymptotically, as ε→ 0,

ψε(t, x, z) ∼
∞
∑

p=0

e−itEp/ε2

φp(t, x)
1√
ε
χp

(z

ε

)

,

where the φp’s solve the following system :

i∂tφp = −∆xφp + V φp , φp(t = 0) =

∫

R

ψ0(x, z)χp(z) dz ,

V =
1

4π|x| ∗
(

∞
∑

p=0

|φp|2
)

.



3. The 2DEG 9

Write the system as a nonlinear Schrödinger equation

i∂tφ
ε = −∆xφ

ε +G(φε), φε(t = 0) = ψ0 ,

where the nonlinearity is

G(u) = e+itHz/ε2

((

1

4π
√

|x|2 + ε2|z|2
∗
∣

∣

∣
e−itHz/ε2

u
∣

∣

∣

2

)

e−itHz/ε2

u

)

.

Steps of the proof :

➠ an adapted functional framework based on Hz ,

➠ analysis of the nonlinearity and local in time estimates,

➠ energy estimate and global in time result.

Remark : no need to take time averages as in the talk of F. Castella (NLS).



3. The 2DEG 10

STEP 1 : FUNCTIONAL FRAMEWORK ADAPTED TO THE HAMILTONIAN

Recall that Hz = −∂2
z + Vc(z). We work in the scale of Sobolev spaces Bs,

s ∈ R+ defined by the norm

‖u‖Bs = ‖u‖L2 + ‖(−∆x)
s/2u‖L2 + ‖(−Hz)

s/2u‖L2 .

Practical use : Hz commutes with the rapidly oscillating operator e+itHz/ε2

,

which is unitary in any Bs (this “singular” operator become “transparent”).

Identification : (see talk of F. Castella) under some assumptions on Vc at the

infinity –typically, symbol behavior– this norm is equivalent to

‖u‖Hs + ‖(Vc)
s/2u‖L2 .

Case B1 = H obvious. General case more difficult, requires Weyl-Hörmander

pseudodifferential calculus (Helffer ’84, Bony-Chemin ’94, Helffer-Nier ’05).
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STEP 2 : ANALYSIS OF THE STRENGTH OF THE NONLINEARITY IN Bs

Leading idea : the Poisson kernel behaves as the convolution with 1

|x|
, x ∈ R

2.

Using Hardy-Littlewood-Sobolev estimates, we get

‖G(u)‖B1 ≤ C ‖u‖3

B1 ,

and more generally the tame estimate, for any s ≥ 1

‖G(u)‖Bs ≤ C ‖u‖2

B1 ‖u‖Bs .

Consequences :

➠ estimate of ψε in H independent of ε on a small time interval,

➠ if ψ0 ∈ Bs, then estimate in Bs on the same time interval.
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STEP 3 : ASYMPTOTIC ANALYSIS OF THE POISSON KERNEL

∥

∥

∥

∥

∥

(

1
√

|x|2 + ε2|z|2
∗ |u|2

)

u−
(

1

|x| ∗x 〈|u|2〉
)

u

∥

∥

∥

∥

∥

B1

≤ C εα ‖u‖3

B2

with 0 < α determined by the growth of Vc at the infinity.

Consequence :

G(u) = e+itHz/ε2

((

1

4π
√

|x|2 + ε2|z|2
∗
∣

∣

∣
e−itHz/ε2

u
∣

∣

∣

2

)

e−itHz/ε2

u

)

.
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∥

∥

∥

∥

∥

(

1
√

|x|2 + ε2|z|2
∗ |u|2

)

u−
(

1

|x| ∗x 〈|u|2〉
)

u

∥

∥

∥

∥

∥
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1

4π|x| ∗x

〈

|e−itHz/ε2

u|2
〉

)

e−itHz/ε2

u

)

+ remainder
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∥

∥

∥

∥

∥

(

1
√
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(

1
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u

∥

∥

∥

∥

∥
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with 0 < α determined by the growth of Vc at the infinity.

Consequence :

G(u) =

((

1

4π|x| ∗x

〈

| u|2
〉

)

u

)

+ remainder

Then we obtain the convergence result by coupling these estimates and the

nonlinear analysis for the Schrödinger-Poisson system (a regularization of the

initial data is necessary in a step).
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STEP 4 : FROM LOCAL TO GLOBAL IN TIME RESULT

Notice that the energy conservation was useless to provide an estimate in H.

The total energy is indeed the sum of the kinetic energy, the selfconsistent

potential energy and the energy of the confinement, which is of order 1/ε2 :

‖∇xψ
ε‖2

L2 + ‖V ε|ψε|2‖L1 +
1

ε2
‖H1/2

z ψε‖2 is conserved.
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Notice that the energy conservation was useless to provide an estimate in H.

The total energy is indeed the sum of the kinetic energy, the selfconsistent

potential energy and the energy of the confinement, which is of order 1/ε2 :

‖∇xψ
ε‖2

L2 + ‖V ε|ψε|2‖L1 +
1

ε2
‖H1/2

z ψε‖2 is conserved.

However, the situation is different in the limit system, where a decoupling occurs :

‖∇xψ‖2

L2 + ‖V |ψ|2‖L1 and
1

ε2
‖H1/2

z ψ‖2 are separately conserved.

Consequence : the limit system is globally well-posed and one can use the

theorem of convergence in the energy space to prove that this convergence

occurs on any arbitrary time interval.
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ASYMPTOTIC RESULT FOR THE POISSON KERNEL IF x ∈ R, z ∈ R
2

For u in the energy space H, one has
(

1
√

|x|2 + ε2|z|2
∗ |u|2

)

u = −2 log ε
〈

|u|2
〉

u+Rε,

where ‖Rε‖L2 ≤ C‖u‖3
H

.
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ASYMPTOTIC RESULT FOR THE POISSON KERNEL IF x ∈ R, z ∈ R
2

For u in the energy space H, one has
(

1
√

|x|2 + ε2|z|2
∗ |u|2

)

u = −2 log ε
〈

|u|2
〉

u+Rε,

where ‖Rε‖L2 ≤ C‖u‖3
H

.

Consequence 1 : in order to get a finite limit, one has to consider initial data of

order | log ε|−1/2 or, equivalently, to work with the rescaled system

i∂tψ
ε = −∆xψ

ε +
1

ε2
Hzψ

ε +
1

| log ε|V
εψε ψε(t = 0) = ψ0

V ε =
1

4π
√

|x|2 + ε2|z|2
∗ |ψε|2
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Consequence 2 : the nonlinearity induces a “loss of derivative” :

instead of ‖G(u)‖B1 ≤ C ‖u‖3

B1 , one has ‖G(u)‖B1 ≤ C ‖u‖3

B2 .

=⇒ Lack of estimate.

Alternative proof : take advantage of the energy estimate for well-prepared initial

data, polarized on the first eigenmode of Hz .

By combining the equations of conservation of the charge and of conservation of

the energy, one gets

‖∇xψ
ε(t)‖2

L2 +
1

| log ε|
∥

∥V ε(t)|ψε(t)|2
∥

∥

L1
+

1

ε2
‖(Hz − E0)

1/2ψε(t)‖2

L2

= ‖∂xψ0‖2

L2 +
1

| log ε|
∥

∥V ε(0)|ψ0|2
∥

∥

L1
+

1

ε2
‖(Hz − E0)

1/2ψ0‖2

L2 .
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∥
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Theorem. Let ψ0(x, z) = φ0(x)χ0(z) with φ0 ∈ H1(R).

Then, as ε→ 0, the filtered function φε converges locally uniformly in time in the

Bs topology, for all s ∈ [0, 1), to the function φ(t, x)χ0(z), where φ solves the

system

i∂tφ = −∂2

xφ+
1

2π
|φ|2φ , φ(t = 0) = φ0 .

Remark that the Poisson nonlinearity becomes a cubic local nonlinearity at the

limit.
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➠ At least in the cases studied here, no interaction between the fast oscillations

eitHz/ε2

and the Poisson nonlinearity.

➠ This situation is different with the case of the NLS equation with a cubic

nonlinearity (see talk of F. Castella), where resonant terms remain at the limit.

➠ The reason here is that V is independent of z at the limit.
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nonlinearity (see talk of F. Castella), where resonant terms remain at the limit.
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Extensions (in progress...)

➠ 1DEG, case with general initial data in the energy space.

➠ 2DEG and 1DEG on bounded domains : towards a numerical approximation

of the Poisson equation.

➠ 2DEG with a strong magnetic field.


	Motivation
	Scaling and qualitative behavior
	The 2DEG
	The 1DEG
	Conclusion and extensions

