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The System

Poisson equation:

−∇ · (ε∇ϕ) = q
(

NA − ND +
∑

eξuξ

)
on Ω + mixed b.c.

Schrödinger equation:[
−~2

2
∇(m−1

ξ ∇) + Vξ

]
ψl,ξ = El,ξψl,ξ on Ω + hom. Dirichl. b.c.

with carrier density u = (u1, . . . ,uσ), σ ∈ N

uξ(x) =
∞∑

l=1

Nl,ξ(Vξ)|ψl,ξ(Vξ)(x)|2

and effective potential

Vξ(u) = −eξ4Eξ + Vxc,ξ(u) + eξqϕ(u)
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quasi Fermi-Level and Fermi-Function

occupation factor Nl,ξ(Vξ) given by

Nl,ξ(Vξ) = fξ(El,ξ(Vξ)− EF ,ξ(Vξ))

fξ a distribution function, i.e. Fermi’s function (3D)

f (s) =
1

1 + es/kBT

and quasi Fermi-level EF ,ξ(Veff ,ξ) defined∫
Ω

uξ(Veff ,ξ(x))dx =
∞∑

l=1

Nl,ξ(Veff ,ξ) = Nξ

Nξ being the fixed total number of ξ-type carriers.
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The Particle Density Operator

Definition
Define the carrier density operator corresponding to f and m by

N (V )(x) =
∞∑

l=1

f (El(V )−EF (V ))|ψl(V )(x)|2 , V ∈ L2(Ω) x ∈ Ω .

El(V ) and ψl(V ) are EV and L2-normalized EF of HV

EF (V ) defined by∫
N (V)dx =

∑
f (El(V )− EF (V )) = N .

eigenvlue asymptotics of HV and properties of f ensure
well-definedness of EF
→ right-hand side series absolutely converges
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Solution of the Kohn-Sham System

Definition
Suppose

NA − ND ∈ W−1,2
Γ (Ω) , 4Eξ ∈ L2(Ω) , ξ ∈ {1, . . . , σ} .

Let ε,m1, . . . ,mσ, f1, . . . , fσ be from L∞(Ω,B(R3,R3)) and ϕΓ

given. Define the external potentials Vξ and the effective doping
D by
D = q(NA − ND)− ϕ̃Γ , Vξ = eξqϕΓ − eξ4Eξ , ξ ∈ {1, . . . , σ} .

(V ,u1, . . . ,uσ) ∈ W 1,2
Γ × (L2(Ω)σ) is a solution of the

Kohn-Sham system, if
AV = D + q

∑
ξ

eξuξ ,

uξ = Nξ(Vξ + Vxc,ξ(u) + eξqV ) .
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Existence and Uniqueness of Solution without Vxc

Monotonicity and Lipschitz continuity of the Operator A yield the
result:

Theorem
The Schrödinger-Poisson system without exchange-correlation
potential has the unique solution

(V ,N1(V1 + V ), . . . ,Nσ(Vσ + V )) .

the operator assigning the solution V to V = (V1, . . . ,Vσ) is

L : (L2(Ω))σ 7→ W 1,2
Γ (Ω) , L(V) = V

L is boundedly Lipschitz continuous
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Existence of Solution to the Kohn-Sham System

Definition (Fixed Point Mapping)

Let V = (V1, . . . ,Vσ) ∈ (L2(Ω))σ be a given tupel of external
potentials and N1 . . . ,Nσ the fixed number of carriers. Define

L1
N = {u = (u1, . . . ,uσ) : uξ ≥ 0,

∫
uξ(x)dx = Nξ}

and Φ : L1
N 7→ L1

N as
Φξ(u) =

Nξ

(
Vξ + Vxc,ξ(u) + eξqL(V1 + Vxc,1(u), . . . ,Vσ + Vxc,σ(u))

)
Theorem (Existence of Fixed Point)

If Vxc,ξ is for any ξ ∈ {1, . . . , σ} a bounded and continuous
mapping from (L1(Ω))σ into L2(Ω), then the mapping Φ has a
fixed point.
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Existence of Solution to the Kohn-Sham System

Theorem (Equivalence of Solutions)

u = (u1, . . . ,uσ) is a fixed point of Φ if and only if

(V ,u1, . . . ,uσ) =
(

A−1
(

D + q
∑

eξuξ

)
,u1, . . . ,uσ

)
is a solution of the Kohn-Sham system.

⇒ the Kohn-Sham system always admits a solution.

Kurt Hoke On the Numerics of 3D Kohn-Sham System



Physical System
Analytical Results

Numerics

The Kerkhoven Scheme
Results

Outline

1 Physical System
The Kohn-Sham System

2 Analytical Results
Existence and Uniqueness of Solutions

3 Numerics
The Kerkhoven Scheme
Results

Kurt Hoke On the Numerics of 3D Kohn-Sham System



Physical System
Analytical Results

Numerics

The Kerkhoven Scheme
Results

The Mapping T (η) 7→ η

η = (η1, . . . , ησ)

u = eη − δ , δ > 0 constant
solve Poisson’s equation for potential ϕ(u,NA − ND)

obtain Vξ(u) = −eξ4Eξ + Vxc,ξ(u) + eξqϕ
solve EVP for Schrödinger’s equation

[−(~2/2)∇ · (1/mξ∇) + Veff ,ξ]ψl,ξ = El,ξψl,ξ

compute carrier densities

uξ(x) =
∑

l

Nl,ξ|ψl,ξ(x)|2

η = log(u + δ)
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Properties of T (η)

Solution of Kohn-Sham system is a fixed point of T (η)

δ = 10−14 added to avoid singularity of logarithm at zero
additional smoothness of logarithm improves convergence
pure iteration scheme may or may not converge
stabilization and acceleration needed
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Heuristic Motivation via Gummel’s Method

Gummel’s method
→ originally for the drift-diffusion model
Kerkhoven analyzed qualitative behavior
→ converges while sufficiently far away from solution
→ slows down when approaching to the solution
opposite to Newton’s method
this behavior is due to the ellipticity of the involved
equations
→ true for the quantum-mechanical system as well
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Stabilization and Acceleration of T (η)

Stabilization:
pure appliance of T (η) causes convergence instabilities
stabilize through adaptive underrelaxation
→ fixed point iteration T (η) = η

until ’close’ to the solution
Acceleration:

accelerate convergence by employing Newton’s method
→ root-finding problem T (η)− η = 0
Jacobian-free version based on GMRES
until convergence
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Adaptive Underrelaxation

initialize: ω = 1, choose η0, set η−1 = 0 and η−2 = η0

Iterate on i : if

‖T (ηi)− ηi‖
‖T (ηi−1)− ηi−1‖

>
‖T (ηi−1)− ηi−1‖
‖T (ηi−2)− ηi−2‖

then

ω := ω ∗ 0.8 , ω′ := min(ω,
‖T (ηi−1)− ηi−1‖
‖T (ηi)− ηi‖

)

ηi+1 = ω′T (ηi) + (1− ω′)ηi

until convergence
→ or ω decreases 5 times in a row
→ or ω remains constant 10 times in a row
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Acceleration by Newton’s Method

Reformulation: ηi+1 = T (ηi) η − T (η) = 0
Newton:
→ requires solution of linear system

[I −∇ηT (ηi)]dη = −[ηi − T (ηi)]

∇ηT (ηi) is the Jacobian matrix of T at ηi
→ not known explicitly
solve system without generating the Jacobian
→ nonlinear version of GMRES (NLGMR)
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Derivative-free GMRES

Solution of Newton’s equation equivalent to minimization
over dη of

‖(I − T )(ηi) + [I −∇ηT (ηi)]dη‖2

GMRES: find approximate solution in Krylov subspace

Km = span{v1, [I −∇ηT (ηi)]v1, . . . , [I −∇ηT (ηi)]
m−1v1}

ONB of Km easily gained by Arnoldi process, provided
v 7→ [I −∇ηT (ηi)]v is available
∇ηT (ηi) never needed explicitly
→ only matrix-vector multiplication ∇ηT (ηi)v
approximate by:

∇ηT (ηi)v ≈
T (ηi + hv)− T (ηi)

h
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Adaption of NLGMR

adjust accuracy of solution to Newton’s method adaptively
→ vary number m of steps in NLGMR
η0 : current approximate solution to η − T (η) = 0
ηm : solution after m steps of GMRES
nonlinear residual:

resnl = ηm − T (ηm)

linear residual:

reslin = η0 − T (η0) + [I −∇ηT (η0)](ηm − η0)

nonlinearity mild ⇒ ‖resnl‖ ≈ ‖reslin‖
‖resnl‖ 6 ≈‖reslin‖
→ linearized model not good
→ accurate solution of Newton’s method wasteful

Kurt Hoke On the Numerics of 3D Kohn-Sham System



Physical System
Analytical Results

Numerics

The Kerkhoven Scheme
Results

Adaption of NLGMR

adjust accuracy of solution to Newton’s method adaptively
→ vary number m of steps in NLGMR
η0 : current approximate solution to η − T (η) = 0
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Resulting NLGMR Iteration

set m = 2
get initial guess η0 for carrier density
employ m steps of GMRES:
→ yields ηm

adapt m:
→ 2

3 ≤ ‖resnl‖/‖reslin‖ ≤ 3
2 ⇒ m := min(2m,25)

→ 3
2 ≤ ‖resnl‖/‖reslin‖ ≤ 5 ⇒ m := m

→ else m := max(2,m/2)

perform linesearch for stepsize τ
→ guarantee decrease of ‖(η0 + τdη)− T (η0 + τdη)‖
until convergence
→ form of Newton’s method ⇒ quadratic rate of
convergence
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Summary of the Algorithm

take initial guess
perform adaptive underrelaxation
until ’close’ to the solution
perform NLGMR method
→ Newton’s method; derivative-free GMRES
until convergence
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General

Implementation:

in the Framework of WIAS-pdelib2 (C++)
→ www.wias-berlin.de/software/pdelib

Discretization:

Finite Volume Method
→ TetGen: Tetrahedral Mesh Generator and 3D Delaunay
Triangulator (tetgen.berlios.de)

Eigenvalues:

ARPACK: Large Scale Eigenvalue Solver
→ www.caam.rice.edu/software/ARPACK
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Grid

4 regions, 70230 cells, 6 bregions 9905 bfaces

Input: 320 points, 172 faces, 4 regions, 6 bregions
Output: 4 regions, 12381 points, 70230 cells, 6 bregions,
9905 bfaces
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Single Electron

f

-8.52e-26

+0.243

+0.487

+0.73

+0.973

+1.22

+1.46

+1.7

+1.95

+2.19

+2.43
f

-8.52e-26

+0.243

+0.973

+1.22

+1.46

+1.7

+1.95

+2.19

+2.43

+0.496

cpu seconds steps
total 1410 17
underrelaxed 100 9
Newton 1310 8
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Residual Evolution
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Efficient numerical simulation of electron states in quantum
wires.
J. Appl. Phys., 68(7):3461-3469, 1990
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