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Poisson equation:

—V - (eVyp) =q (NA — Np + Z e5u§) on 2 + mixed b.c.
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The Kohn-Sham System

The System

Poisson equation:
—V - (eVyp) =q (NA — Np + Z e5u§) on 2 + mixed b.c.

Schrédinger equation:

12 _ .
—EV(m£ V) + Vg] Y1e = E1¢thre on Q +hom. Dirichl. b.c.
with carrier density u = (uy,...,U,), 0 € N

Ue(X) =Y Nie(Ve)lwre(Ve) (X)P
=1
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Physical System
The Kohn-Sham System

The System

Poisson equation:
—V - (eVyp) =q (NA — Np + Z e5u§) on 2 + mixed b.c.

Schrédinger equation:

12 _ .
—EV(m£ V) + Vg] Y1e = E1¢thre on Q +hom. Dirichl. b.c.
with carrier density u = (uy,...,U,), 0 € N

Ue(X) =Y Nie(Ve)lwre(Ve) (X)P
=1

and effective potential

Ve(u) = —ec AE¢ + Viee(U) + e:qep(u)

Kurt Hoke On the Numerics of 3D Kohn-Sham System



Physical System
The Kohn-Sham System

quasi Fermi-Level and Fermi-Function

@ occupation factor N, (V) given by

Nie(Ve) = fe(E1e(Ve) — EFe(Ve))
@ f; a distribution function, i.e. Fermi’s function (3D)

1
S) = e/t
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Physical System
The Kohn-Sham System

quasi Fermi-Level and Fermi-Function

@ occupation factor N, (V) given by
Nie(Ve) = fe(E1¢(Ve) — EFe(Ve))
@ f; a distribution function, i.e. Fermi’s function (3D)
1
S) = e/t
@ and quasi Fermi-level £ ¢( Ve ¢ ) defined
/Qus(Veff,g(X))dX =Y Nie(Verrg) = Ne
=1

N: being the fixed total number of £-type carriers.
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Analytical Results Existence and Uniqueness of Solutions

The Particle Density Operator

Definition
Define the carrier density operator corresponding to f and m by

V)(x) = Z FE(V) — E(VDIVIR L Ve Q) x € Q.

@ &(V) and (V) are EV and L?-normalized EF of Hy
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The Particle Density Operator

Definition
Define the carrier density operator corresponding to f and m by

V)(x) = Z FE(V) — E(VDIVIR L Ve Q) x € Q.

@ &(V) and (V) are EV and L?-normalized EF of Hy
@ &r(V) defined by

[N = E) - e (v)) -
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Analytical Results Existence and Uniqueness of Solutions

The Particle Density Operator

Definition
Define the carrier density operator corresponding to f and m by

V)(x) = Z FE(V) — E(VDIVIR L Ve Q) x € Q.

@ &(V) and (V) are EV and L?-normalized EF of Hy
@ &r(V) defined by

[N = E) - e (v)) -

@ eigenvlue asymptotics of Hy and properties of f ensure
well-definedness of £
— right-hand side series absolutely converges
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Analytical Results Existence and Uniqueness of Solutions

Solution of the Kohn-Sham System

Definition
Suppose

Na—Npe W 3(Q), AE el?Q),¢e{l,...,0}.
Lete,my,...,m,, fi, ... f, be from L. (Q, B(R3 R?)) and or
given. Define the external potentials V; and the effective doping
D by

D=q(Na—Np)—¢r, Ve=eqpr—e{AE:, {€{1,...,0}.

(V,uy,...,U,) € W2 x (L2(Q)7) is a solution of the
Kohn-Sham system, if
AV = D+q) e,
3
U = Ng(Ve+ Viee(u)+eqV).
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Analytical Results Existence and Uniqueness of Solutions

Existence and Uniqueness of Solution without V.

Monotonicity and Lipschitz continuity of the Operator A yield the
result:

The Schrédinger-Poisson system without exchange-correlation
potential has the unique solution

(VN (Vi + V), .. NG(Ve + V).
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Analytical Results Existence and Uniqueness of Solutions

Existence and Uniqueness of Solution without V.

Monotonicity and Lipschitz continuity of the Operator A yield the
result:

The Schrédinger-Poisson system without exchange-correlation
potential has the unique solution

(VN (Vi + V), .. NG(Ve + V).

@ the operator assigning the solution VtoV = (V;,...,V,)is
L(BQ) = WAQ), LV)=V

@ L is boundedly Lipschitz continuous
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Analytical Results Existence and Uniqueness of Solutions

Existence of Solution to the Kohn-Sham System

Definition (Fixed Point Mapping)
LetV=(V,...,V,) € (L?(Q))° be a given tupel of external
potentials and N; . .., N, the fixed number of carriers. Define
Ly ={u=(u1,...,Uy): Ug >0, /u5(x)dx: Ne}
and¢:L}V'—>L}VaS
Pe(u) =
Ne (Ve + Viog(u) + 8:qL(Vs + Vig1(u), .., Vo + Vi (1))
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Analytical Results Existence and Uniqueness of Solutions

Existence of Solution to the Kohn-Sham System

Definition (Fixed Point Mapping)
LetV=(V,...,V,) € (L?(Q))° be a given tupel of external
potentials and N; . .., N, the fixed number of carriers. Define
Ly ={u=(u1,...,Uy): Ug >0, /u5(x)dx: Ne}
and¢:L}V'—>L}VaS
Pe(u) =
Ne (Ve + Viog(u) + 8:qL(Vs + Vig1(u), .., Vo + Vi (1))

Theorem (Existence of Fixed Point)

If Vieg is forany & € {1,...,0} a bounded and continuous
mapping from (L'(R))° into L2(R), then the mapping ® has a
fixed point.
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Analytical Results Existence and Uniqueness of Solutions

Existence of Solution to the Kohn-Sham System

Theorem (Equivalence of Solutions)
u=(uw,...,U,) is a fixed point of ® if and only if

(V,uy,...,U,) = (A‘1 (D+qu§u5),u1,...,ug)

is a solution of the Kohn-Sham system.

= the Kohn-Sham system always admits a solution.
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The Kerkhoven Scheme

. Results
Numerics

The Mapping T(n) — 7

@ =N, 1N)
@u=¢€e"-45, 6> 0constant
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The Kerkhoven Scheme

. Results
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The Mapping T(n) — 7

@ =N, 1N)
@u=¢€e"-45, 6> 0constant

@ solve Poisson’s equation for potential o(u, Na — Np)
@ obtain Vi(u) = —e:AE: + Viee(U) + ecqyp
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The Kerkhoven Scheme
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The Mapping T(n) — 7

n=m,-7)
u=¢e"-¢§, 6> 0constant

°
o
@ solve Poisson’s equation for potential o(u, Na — Np)
@ obtain Vi (u) = —e:AE¢ + Vice(U) + €cqp

@ solve EVP for Schrédinger’s equation

[—(h2/2)V - (1/MeV) + Ve elthne = Eretiie

compute carrier densities

Te(X) =Y Ni¢
/

Ure(x)[2
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The Kerkhoven Scheme
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The Mapping T(n) — 7

n=m,-7)
u=¢e"-¢§, 6> 0constant

solve Poisson’s equation for potential ¢(u, Na — Np)
obtain Ve(u) = —e:AE: + Vi e(U) + €:qy
solve EVP for Schrédinger’s equation

[—(h2/2)V - (1/MeV) + Ve elthne = Eretiie

compute carrier densities

Te(X) =Y Ni¢
/

Ure(x)[2

@ 77 = log(u + 9)
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Properties of T(n)

@ Solution of Kohn-Sham system is a fixed point of T(n)

Kurt Hoke On the Numerics of 3D Kohn-Sham System



The Kerkhoven Scheme

. Results
Numerics

Properties of T(n)

@ Solution of Kohn-Sham system is a fixed point of T(n)
@ § = 10~ "% added to avoid singularity of logarithm at zero
@ additional smoothness of logarithm improves convergence
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The Kerkhoven Scheme

. Results
Numerics

Properties of T(n)

@ Solution of Kohn-Sham system is a fixed point of T(n)

@ § = 10~ "% added to avoid singularity of logarithm at zero
@ additional smoothness of logarithm improves convergence
@ pure iteration scheme may or may not converge

@ stabilization and acceleration needed
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The Kerkhoven Scheme

. Results
Numerics

Heuristic Motivation via Gummel’s Method

@ Gummel’s method
— originally for the drift-diffusion model
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Heuristic Motivation via Gummel’s Method

@ Gummel’s method
— originally for the drift-diffusion model

@ Kerkhoven analyzed qualitative behavior
— converges while sufficiently far away from solution
— slows down when approaching to the solution
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Heuristic Motivation via Gummel’s Method

@ Gummel’s method
— originally for the drift-diffusion model

@ Kerkhoven analyzed qualitative behavior
— converges while sufficiently far away from solution
— slows down when approaching to the solution

@ opposite to Newton’s method

@ this behavior is due to the ellipticity of the involved
equations
— true for the quantum-mechanical system as well
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The Kerkhoven Scheme
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Stabilization and Acceleration of T(n)

Stabilization:
@ pure appliance of T(n) causes convergence instabilities

@ stabilize through adaptive underrelaxation
— fixed point iteration T(n) =7

@ until 'close’ to the solution
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The Kerkhoven Scheme

. Results
Numerics

Stabilization and Acceleration of T(n)

Stabilization:
@ pure appliance of T(n) causes convergence instabilities

@ stabilize through adaptive underrelaxation
— fixed point iteration T(n) =7

@ until 'close’ to the solution
Acceleration:

@ accelerate convergence by employing Newton’s method
— root-finding problem T(n) —n =0

@ Jacobian-free version based on GMRES
@ until convergence
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The Kerkhoven Scheme

. Results
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Adaptive Underrelaxation

@ initialize: w = 1, choose g, setn_y =0and n_» = ng
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The Kerkhoven Scheme
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Adaptive Underrelaxation

@ initialize: w = 1, choose g, setn_y =0and n_» = ng
@ lterate on /: if

I T (i) — nill S I T(miz1) — niz1l|

I T(mi1) —ni—1ll ~ 1T (ni—2) — ni—2||
then
: T(ni—1) — ni—1|
w:=w=x0.8, w’::mlnw,H !
T =l
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The Kerkhoven Scheme

. Results
Numerics

Adaptive Underrelaxation

@ initialize: w = 1, choose g, setn_y =0and n_» = ng
@ lterate on /: if

I T (i) — nill S I T(miz1) — niz1l|
I T(mi1) —ni—1ll ~ 1T (ni—2) — ni—2||

then

| T(ni—1) — ni-1]|

wi=wx*x08, W :=min(w,
T

@ iy =W T(m) + (1 —wn
@ until convergence
— or w decreases 5 times in a row
— or w remains constant 10 times in a row
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The Kerkhoven Scheme

. Results
Numerics

Acceleration by Newton’s Method

@ Reformulation: 5.4 = T(n;) ~n— T(n) =0
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The Kerkhoven Scheme
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Acceleration by Newton’s Method

@ Reformulation: nj.1 = T(n;)) ~n—T(n) =0
@ Newton:
— requires solution of linear system

[/ =V T(ni)ldn = —[ni — T(ni)]

@ V, T(;) is the Jacobian matrix of T at 7;
— not known explicitly
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The Kerkhoven Scheme

. Results
Numerics

Acceleration by Newton’s Method

@ Reformulation: nj.1 = T(n;)) ~n—T(n) =0
@ Newton:
— requires solution of linear system

[/ =V T(ni)ldn = —[ni — T(ni)]

@ V, T(;) is the Jacobian matrix of T at 7;
— not known explicitly

@ solve system without generating the Jacobian
— nonlinear version of GMRES (NLGMR)
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The Kerkhoven Scheme

. Results
Numerics

Derivative-free GMRES

@ Solution of Newton’s equation equivalent to minimization
over dn of

101 = T)(mi) + [T =V T (i)l |2
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Derivative-free GMRES

@ Solution of Newton’s equation equivalent to minimization
over dn of

11 =T)(mi) + U =V T(ni)ldnll2
@ GMRES: find approximate solution in Krylov subspace

K = span{vy, [1 =V, Tm)lvi, ... 11 =V )] e}

@ ONB of K, easily gained by Arnoldi process, provided
vi— [l =V, T(n;)]v is available
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Derivative-free GMRES

@ Solution of Newton’s equation equivalent to minimization

over dn of
1T =T)(ni) + [ = Vg T(mi)]dn]l2

@ GMRES: find approximate solution in Krylov subspace

K = span{vy, [1 =V, Tm)lvi, ... 11 =V )] e}

@ ONB of K, easily gained by Arnoldi process, provided
vi— [l =V, T(n;)]v is available

@ V, T(n;) never needed explicitly
— only matrix-vector multiplication V,, T (n;)v

@ approximate by:
T(ni + hv) — T(n;
vn T(ni)v ~ (771 h) (77!)
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The Kerkhoven Scheme

. Results
Numerics

Adaption of NLGMR

@ adjust accuracy of solution to Newton’s method adaptively
— vary number m of steps in NLGMR
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The Kerkhoven Scheme

. Results
Numerics

Adaption of NLGMR

@ adjust accuracy of solution to Newton’s method adaptively
— vary number m of steps in NLGMR

@ 1) : current approximate solutionton — T(n) =0

@ 1, : solution after m steps of GMRES
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The Kerkhoven Scheme
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Adaption of NLGMR

@ adjust accuracy of solution to Newton’s method adaptively
— vary number m of steps in NLGMR

@ 1) : current approximate solutionton — T(n) =0

@ 1) : solution after m steps of GMRES

@ nonlinear residual:

respr = nm — T(nm)
@ linear residual:

resiin =10 — T(no) + [/ — Vy T(10)](nm — no)
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The Kerkhoven Scheme

. Results
Numerics

Adaption of NLGMR

@ adjust accuracy of solution to Newton’s method adaptively
— vary number m of steps in NLGMR

@ 1) : current approximate solutionton — T(n) =0

nm - solution after m steps of GMRES

@ nonlinear residual:

resp = nm — T(7m)

@ linear residual:

resiin =10 — T(no) + [/ — Vy T(10)](nm — no)

@ nonlinearity mild = ||resy,|| ~ ||res;i||
o |[resp| A resiil|
— linearized model not good
— accurate solution of Newton’s method wasteful
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. Results
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Resulting NLGMR lteration

@ setm=2
@ get initial guess ) for carrier density
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The Kerkhoven Scheme

. Results
Numerics

Resulting NLGMR lteration

@ setm=2
@ get initial guess ) for carrier density

@ employ m steps of GMRES:
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The Kerkhoven Scheme
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Numerics

Resulting NLGMR lteration

@ setm=2
@ get initial guess ) for carrier density
@ employ m steps of GMRES:
— yields nm
@ adapt m:
— £ < ||[resp||/||resin|| < 3 = m:= min(2m, 25)
— 3 < |[respl|/||reSin|| <5 = m:=m
— else m:= max(2,m/2)
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The Kerkhoven Scheme
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Resulting NLGMR lteration

@ setm=2
@ get initial guess ) for carrier density
@ employ m steps of GMRES:
— yields nm
@ adapt m:
— £ < ||[resp||/||resin|| < 3 = m:= min(2m, 25)
— 3 < |[respl|/||reSin|| <5 = m:=m
— else m:= max(2,m/2)
@ perform linesearch for stepsize
— guarantee decrease of ||(no + 7dn) — T(no + 7dn)||
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The Kerkhoven Scheme

. Results
Numerics

Resulting NLGMR lteration

@ setm=2
@ get initial guess ) for carrier density
@ employ m steps of GMRES:
— yields nm
@ adapt m:
— £ < ||[resp||/||resin|| < 3 = m:= min(2m, 25)
— 3 < |[respl|/||reSin|| <5 = m:=m
— else m:= max(2,m/2)
@ perform linesearch for stepsize
— guarantee decrease of ||(no + 7dn) — T(no + 7dn)||

@ until convergence
— form of Newton’s method =- quadratic rate of
convergence
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Summary of the Algorithm

@ take initial guess
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Summary of the Algorithm

@ take initial guess
@ perform adaptive underrelaxation
@ until ‘close’ to the solution
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The Kerkhoven Scheme

. Results
Numerics

Summary of the Algorithm

@ take initial guess
@ perform adaptive underrelaxation
@ until ‘close’ to the solution

@ perform NLGMR method
— Newton’s method; derivative-free GMRES

@ until convergence
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The Kerkhoven Scheme

. Results
Numerics

General

Implementation:

@ in the Framework of WIAS-pdelib2 (C++)
— www.wias-berlin.de/software/pdelib

Discretization:

@ Finite Volume Method
— TetGen: Tetrahedral Mesh Generator and 3D Delaunay
Triangulator (tetgen.berlios.de)

Eigenvalues:

@ ARPACK: Large Scale Eigenvalue Solver
— www.caam.rice.edu/software/ARPACK
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The Kerkhoven Scheme

Results

i
"”favl\.,,///‘/'/
ifiil4

gn'e

@ Input: 320 points, 172 faces, 4 regions, 6 bregions
@ Output: 4 regions, 12381 points, 70230 cells, 6 bregions,
9905 bfaces
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Single Electron

'-.-*2 43 i!+z.43
219 219
— 4195 —+1.95
| &% —+17
—+1.46 — +1.46
oz — 22
—+0.973 = +0.973
073
= 0487 0496
+0.243 lw.zaa
-8.52e-26 -8.52¢-26

cpu seconds steps
total 1410 17
underrelaxed 100 9
Newton 1310 8
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Numerics pesus
Residual Evolution
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" Results
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3 A.T. Galick, T. Kerkhoven, U. Ravaioli, J.H. Arends, Y. Saad

Efficient numerical simulation of electron states in quantum
wires.

J. Appl. Phys., 68(7):3461-3469, 1990
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