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Talk overview
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Hα,Γ = −∆− αδ(x− Γ)

Geometrically induced spectral properties: bound
states, strong coupling

Scattering on a locally deformed line: existence and
completeness, on-shell S-matrix for negative energies

Approximation by point interaction Hamiltonians
and indications for existence of resonances

Open questions
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Scattering on quantum-wire systems
Widely used: scattering on “ideal” graphs, e.g.
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Here we study Schrödinger operator on graph, with
appropriate b.c. at vertices. Scattering is an ODE problem
and it is easy to study resonances; for reviews see, e.g.,
[Kuchment’04], the forthcoming [INI AGA Proc.’08], etc.
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Here we study Schrödinger operator on graph, with
appropriate b.c. at vertices. Scattering is an ODE problem
and it is easy to study resonances; for reviews see, e.g.,
[Kuchment’04], the forthcoming [INI AGA Proc.’08], etc.

More realistic models of quantum wires treat them as
finite-width channels, typically with Dirichlet b.c. Various
scattering problems studied numerically in many papers.

Rigorous results not so common, for instance, resonances
existence in smoothly bent tubes was demonstrated in
[Duclos-E.-Št’ovíček’95], [Duclos-E.-Meller’98].
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Drawbacks of these models
First, we have ad hoc parameters in the b.c. describing
branchings. A way out: use a zero-width limit, schematically
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Looking simple, but it is a nontrivial problem. What is
known?
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Looking simple, but it is a nontrivial problem. What is
known?

after a long effort the Neumann-like case is understood,
see [Freidlin-Wentzell’93], [Freidlin’96], [Saito’01],
[Kuchment-Zeng’01], [Rubinstein-Schatzmann’01],
[E.-Post’05, 07], [Post’06], giving basically free b.c. only

recently a progress achieved in the Dirichlet case
[Post’05], [Molchanov-Vainberg’07], [Grieser’07],
Cacciapuoti-E.’07].
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Drawbacks, continued

At least in principle, the difficulty with the ad hoc
parameters can be thus solved
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Drawbacks, continued

At least in principle, the difficulty with the ad hoc
parameters can be thus solved

The “ideal” graph models have, however, another flaw,
namely that quantum tunneling is neglected :

recall that a true quantum-wire boundary is a finite
potential jump, so an electron may pass between
different quantum wires by tunneling the classically
forbidden region between them

This motivates us to look for an alternative quantum
graph model
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Leaky quantum graphs

We consider “leaky” graphs with an attractive interaction
supported by graph edges. Formally we have

Hα,Γ = −∆− αδ(x− Γ) , α > 0 ,

in L2(R2), where Γ is the graph in question.
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Leaky quantum graphs

We consider “leaky” graphs with an attractive interaction
supported by graph edges. Formally we have

Hα,Γ = −∆− αδ(x− Γ) , α > 0 ,

in L2(R2), where Γ is the graph in question.

A proper definition of Hα,Γ: it can be associated naturally
with the quadratic form,

ψ 7→ ‖∇ψ‖2L2(Rn) − α
∫

Γ
|ψ(x)|2dx ,

which is closed and below bounded in W 1,2(Rn); the second
term makes sense in view of Sobolev embedding. This
definition also works for various “wilder” sets Γ
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Leaky quantum-graph Hamiltonians

For Γ with locally finite number of smooth edges and no
cusps we can use an alternative definition by boundary
conditions: Hα,Γ acts as −∆ on functions from W 1,2

loc (R2 \ Γ),
which are continuous and exhibit a normal-derivative jump,
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Remarks:

for graphs in R
3 we use generalized b.c. which define a

two-dimensional point interaction in normal plane

one can combine “edges” of different dimensions as
long as codim Γ does not exceed three
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Geometrically induced spectrum

(a) Bending means binding, i.e. it may create isolated
eigenvalues of Hα,Γ. Consider a piecewise C1-smooth
Γ : R→ R

2 parameterized by its arc length, and assume:
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Geometrically induced spectrum

(a) Bending means binding, i.e. it may create isolated
eigenvalues of Hα,Γ. Consider a piecewise C1-smooth
Γ : R→ R

2 parameterized by its arc length, and assume:

|Γ(s)− Γ(s′)| ≥ c|s− s′| holds for some c ∈ (0, 1)

Γ is asymptotically straight: there are d > 0, µ > 1
2

and ω ∈ (0, 1) such that

1− |Γ(s)− Γ(s′)|
|s− s′| ≤ d

[

1 + |s+ s′|2µ
]−1/2

in the sector Sω :=
{

(s, s′) : ω < s
s′ < ω−1

}

straight line is excluded, i.e. |Γ(s)− Γ(s′)| < |s− s′|
holds for some s, s′ ∈ R
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Bending means binding

Theorem [E.-Ichinose, 2001]: Under these assumptions,
σess(Hα,Γ) = [−1

4α
2,∞) and Hα,Γ has at least one eigenvalue

below the threshold −1
4α

2
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Bending means binding

Theorem [E.-Ichinose, 2001]: Under these assumptions,
σess(Hα,Γ) = [−1

4α
2,∞) and Hα,Γ has at least one eigenvalue

below the threshold −1
4α

2

The same for curves in R
3, under stronger regularity,

with −1
4α

2 is replaced by the corresponding 2D p.i. ev

For curved surfaces Γ ⊂ R
3 such a result is proved in

the strong coupling asymptotic regime only

Implications for graphs: let Γ̃ ⊃ Γ in the set sense, then
Hα,Γ̃ ≤ Hα,Γ. If the essential spectrum threshold is the
same for both graphs and Γ fits the above assumptions,
we have σdisc(Hα,Γ) 6= ∅ by minimax principle
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Geometrically induced spectrum, contd

(b) Strong coupling asymptotics: let Γ : R→ R
2 be as

above, now supposed to be C4-smooth

Theorem [E.-Yoshitomi, 2001]: The j-th ev of Hα,Γ is

λj(α) = −1

4
α2 + µj +O(α−1 lnα) as α→∞ ,

where µj is the j-th ev of KΓ := − d
ds2 − 1

4γ(s)
2 on L2(R)

and γ is the curvature of Γ.
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Geometrically induced spectrum, contd

(b) Strong coupling asymptotics: let Γ : R→ R
2 be as

above, now supposed to be C4-smooth

Theorem [E.-Yoshitomi, 2001]: The j-th ev of Hα,Γ is

λj(α) = −1

4
α2 + µj +O(α−1 lnα) as α→∞ ,

where µj is the j-th ev of KΓ := − d
ds2 − 1

4γ(s)
2 on L2(R)

and γ is the curvature of Γ. The same holds if Γ is a loop;
then we also have

#σdisc(Hα,Γ) =
|Γ|α
2π

+O(lnα) as α→∞
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Further extensions

Hα,Γ with a periodic Γ has a band-type spectrum, but
analogous asymptotics is valid for its Floquet
components Hα,Γ(θ), with the comparison operator
KΓ(θ) satisfying the appropriate b.c. over the period
cell. It is important that the error term is uniform w.r.t. θ
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Similar result holds for planar loops threaded by mg
field, homogeneous, AB flux line, etc.
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components Hα,Γ(θ), with the comparison operator
KΓ(θ) satisfying the appropriate b.c. over the period
cell. It is important that the error term is uniform w.r.t. θ

Similar result holds for planar loops threaded by mg
field, homogeneous, AB flux line, etc.
Higher dimensions: the results extend to loops, infinite
and periodic curves in R

3
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Further extensions

Hα,Γ with a periodic Γ has a band-type spectrum, but
analogous asymptotics is valid for its Floquet
components Hα,Γ(θ), with the comparison operator
KΓ(θ) satisfying the appropriate b.c. over the period
cell. It is important that the error term is uniform w.r.t. θ

Similar result holds for planar loops threaded by mg
field, homogeneous, AB flux line, etc.
Higher dimensions: the results extend to loops, infinite
and periodic curves in R

3

and to curved surfaces in R
3; then the comparison

operator is −∆LB +K −M2, where K,M , respectively,
are the corresponding Gauss and mean curvatures
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Scattering on a locally deformed line

Scattering requires to specify a free dynamics. In this talk
we suppose that the latter is described by Hα,Σ, where Σ is
a straight line, Σ = {(x1, 0) : x1 ∈}, and that the graph Γ in
question differs from Σ by a local deformation only

��� �� @@
@@ i
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Assumptions
We will consider the following class of local deformations:

there exists a compact M ⊂ R
2 such that Γ \M = Σ \M ,

the set Γ \ Σ admits a finite decomposition,

Γ \ Σ =
N
⋃

i=1

Γi , N <∞ ,

where the Γi’s are finite C1 curves such that no pair of
components of Γ crosses at their interior points, neither
a component has a self-intersection; we allow the
components to touch at their endpoints but assume
they do not form a cusp there

As we have said, Hα,Γ is then well defined
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Krein’s formula
Our main tool will be a formula comparing the resolvents of
Hα,Γ and Hα,Σ. We will use the decomposition

Λ = Λ0 ∪ Λ1 with Λ0 := Σ \ Γ , Λ1 := Γ \ Σ =
N
⋃

i=1

Γi ;

the coupling constant of the perturbation will be naturally
equal to α on the “subtracted” set Λ0 and −α on Λ1
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Krein’s formula
Our main tool will be a formula comparing the resolvents of
Hα,Γ and Hα,Σ. We will use the decomposition

Λ = Λ0 ∪ Λ1 with Λ0 := Σ \ Γ , Λ1 := Γ \ Σ =
N
⋃

i=1

Γi ;

the coupling constant of the perturbation will be naturally
equal to α on the “subtracted” set Λ0 and −α on Λ1

To construct resolvent of Hα,Σ we use Rk, the one of −∆,
which is for k2 ∈ ρ(−∆) an integral operator with the kernel

Gk(x−y) =
1

(2π)2

∫

R2

eip(x−y)

p2 − k2
dp =

1

2π
K0(ik|x−y|) ,

where K0(·) stands for the Macdonald function
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Krein’s formula, continued
A straightforward computation shows that the resolvent Rk

Σ

of Hα,Σ has the kernel Gk
Σ(x−y) given by

Gk(x−y) +
α

4π3

∫

3

eipx−ip′y

(p2−k2)(p′2−k2)

τk(p1)

2τk(p1)−α
dp dp′2 ,

where τk(p1) := (p2
1 − k2)1/2 and p = (p1, p2), p

′ = (p1, p
′
2)
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Krein’s formula, continued
A straightforward computation shows that the resolvent Rk

Σ

of Hα,Σ has the kernel Gk
Σ(x−y) given by

Gk(x−y) +
α

4π3

∫

3

eipx−ip′y

(p2−k2)(p′2−k2)

τk(p1)

2τk(p1)−α
dp dp′2 ,

where τk(p1) := (p2
1 − k2)1/2 and p = (p1, p2), p

′ = (p1, p
′
2)

We need embeddings of Rk
Σ to L2(ν), where ν ≡ νΛ is the

Dirac measure on Λ. It can be written as νΛ = ν0 +
∑N

i=1 νi,
where ν0 is the Dirac measure on Λ0. It convenient also to
introduce the space h ≡ L2(ν) which decomposes into

h = h0 ⊕ h1 with h0 ≡ L2(ν0) and h1 ≡
N
⊕

i=1

L2(νi)
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Embeddings

Now we are able to introduce the operator

Rk
Σ,ν : h→ L2 , Rk

Σ,νf = Gk
Σ ∗ fν for f ∈ h

defined for suitable values of k. Similarly, (Rk
Σ,ν)∗ : L2 → h is

its adjoint and Rk
Σ,νν denotes the operator-valued matrix in h

with the “block elements” Gk
Σ,ij ≡ Gk

Σ,νiνj
: L2(νj)→ L2(νi)
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Embeddings

Now we are able to introduce the operator

Rk
Σ,ν : h→ L2 , Rk

Σ,νf = Gk
Σ ∗ fν for f ∈ h

defined for suitable values of k. Similarly, (Rk
Σ,ν)∗ : L2 → h is

its adjoint and Rk
Σ,νν denotes the operator-valued matrix in h

with the “block elements” Gk
Σ,ij ≡ Gk

Σ,νiνj
: L2(νj)→ L2(νi)

They have the following properties:

For any κ ∈ (α/2,∞) the operator Riκ
Σ,ν is bounded. In

fact, Riκ
Σ,ν is a continuous embedding into W 1,2

For any σ > 0 there exists κσ such that for κ > κσ the
operator Riκ

Σ,νν is bounded with the norm less than σ
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Krein’s formula, continued
Introduce an operator-valued matrix in h = h0 ⊕ h1 as

Θk = −(α−1
Ǐ + Rk

Σ,νν) with Ǐ =

(

I0 0

0 −I1

)

,

where Ii are the unit operators in hi. Using the properties of
the embeddings we prove the following claim:
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Krein’s formula, continued
Introduce an operator-valued matrix in h = h0 ⊕ h1 as

Θk = −(α−1
Ǐ + Rk

Σ,νν) with Ǐ =

(

I0 0

0 −I1

)

,

where Ii are the unit operators in hi. Using the properties of
the embeddings we prove the following claim:

Theorem [E.-Kondej, 2005]: Let Θk have inverse in B(h) for
k ∈ C

+ and let the operator

Rk
Γ = Rk

Σ + Rk
Σ,ν(Θk)−1(Rk

Σ,ν)∗

be defined everywhere on L2. Then k2 belongs to ρ(Hα,Γ)

and the resolvent (Hα,Γ − k2)−1 is given by Rk
Γ
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Spectrum ofHα,Γ

Let us first look at the essential spectrum:

Proposition: σess(Hα,Γ) = σess(Hα,Σ) =
[

−1
4α

2,∞
)

Proof: Check that Bk := Rk
Σ,ν(Θk)−1(Rk

Σ,ν)∗ is compact for

some k ∈ C
+. We know that (Θiκ)−1 ∈ B(h) and (Riκ

Σ,ν)∗ is

bounded if κ is large enough. By [BEKŠ’94] we have
∫

R2

∫

R2 |Giκ(x−y)|2 νj(dy) dx <∞, and for κ > 1
2α and

j = 0, ..., N the second component ξk of Giκ
Σ satisfies

∫

R2

∫

R2

|ξk(x, y)|2 νj(dy) dx < CLj

∫

R2

dp

(p2 + κ)2
<∞ ,

where C is a constant and Lj denote the length of Λj. This
yields compactness of Rk

Σ,ν , and thus the same for Bk. �
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Spectrum ofHα,Γ

Let us first look at the essential spectrum:

Proposition: σess(Hα,Γ) = σess(Hα,Σ) =
[

−1
4α

2,∞
)

Proof: Check that Bk := Rk
Σ,ν(Θk)−1(Rk

Σ,ν)∗ is compact for

some k ∈ C
+. We know that (Θiκ)−1 ∈ B(h) and (Riκ

Σ,ν)∗ is

bounded if κ is large enough. By [BEKŠ’94] we have
∫

R2

∫

R2 |Giκ(x−y)|2 νj(dy) dx <∞, and for κ > 1
2α and

j = 0, ..., N the second component ξk of Giκ
Σ satisfies

∫

R2

∫

R2

|ξk(x, y)|2 νj(dy) dx < CLj

∫

R2

dp

(p2 + κ)2
<∞ ,

where C is a constant and Lj denote the length of Λj. This
yields compactness of Rk

Σ,ν , and thus the same for Bk. �

Remark: σdisc(Hα,Γ) given by singularities of Θk is often
non-empty – see above – but it is not our concern here
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Wave operators

The existence and completeness of wave operators for
the pair (Hα,Γ, Hα,Σ) follows from the standard trace-class
criterion, conventionally called Birman-Kuroda theorem.
Specifically, we have

Theorem [E.-Kondej, 2005]: Biκ is a trace class operator
for κ sufficiently large
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Wave operators

The existence and completeness of wave operators for
the pair (Hα,Γ, Hα,Σ) follows from the standard trace-class
criterion, conventionally called Birman-Kuroda theorem.
Specifically, we have

Theorem [E.-Kondej, 2005]: Biκ is a trace class operator
for κ sufficiently large

Proof is inspired by [Brasche-Teta’92]. We use the estimate
(Θiκ)−1 ≤ C ′(Θiκ,+)−1, where Θiκ,+ := α−1

I + Riκ
Σ,νν and I is

the (N + 1)× (N + 1) unit matrix, for some C ′ > 0 and all κ
sufficiently large; it is clear that (Θiκ,+)−1 is positive and
bounded. This gives

Biκ ≤ C ′Biκ,+ , Biκ,+ := Riκ
Σ,ν(Θiκ,+)−1(Riκ

Σ,ν)∗
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Proof, continued
Define Biκ,+

δ as integral operator with the kernel

Biκ,+
δ (x, y) = χδ(x)B

iκ,+(x, y)χδ(y) ,

where χδ stands for the indicator function of the ball B(0, δ);
one has Biκ,+

δ → Biκ,+ as δ →∞ in the weak sense.
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Proof, continued
Define Biκ,+

δ as integral operator with the kernel

Biκ,+
δ (x, y) = χδ(x)B

iκ,+(x, y)χδ(y) ,

where χδ stands for the indicator function of the ball B(0, δ);
one has Biκ,+

δ → Biκ,+ as δ →∞ in the weak sense.Then
∫

R2

B
iκ,+
δ (x, x)dx =

∫

R2

(Giκ
Σ (·, x)χδ(x), (Θ

iκ,+)−1Giκ
Σ (·, x)χδ(x))h dx

≤ ‖(Θiκ,+)−1‖
∫

R2

‖Giκ
Σ (·, x)χδ(x)‖2h dx ≤ C‖(Θiκ,+)−1‖ ,

hence Biκ,+
δ is trace class for any δ > 0, and the same is

true for the limiting operator.
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Proof, continued
Define Biκ,+

δ as integral operator with the kernel

Biκ,+
δ (x, y) = χδ(x)B

iκ,+(x, y)χδ(y) ,

where χδ stands for the indicator function of the ball B(0, δ);
one has Biκ,+

δ → Biκ,+ as δ →∞ in the weak sense.Then
∫

R2

B
iκ,+
δ (x, x)dx =

∫

R2

(Giκ
Σ (·, x)χδ(x), (Θ

iκ,+)−1Giκ
Σ (·, x)χδ(x))h dx

≤ ‖(Θiκ,+)−1‖
∫

R2

‖Giκ
Σ (·, x)χδ(x)‖2h dx ≤ C‖(Θiκ,+)−1‖ ,

hence Biκ,+
δ is trace class for any δ > 0, and the same is

true for the limiting operator.

Similarly one finds a Hermitian trace class operator Biκ,−

which provides an estimate from below, Biκ,− ≤ Biκ; this
means that Biκ is a trace class operator too. �
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Generalized eigenfunctions
We want to find the S-matrix, Sψ−

λ = ψ+
λ , for scattering in

the negative part of the spectrum with a fixed energy
λ ∈ (−1

4α
2, 0) corresponding to the effective momentum

kα(λ) := (λ+ α2/4)1/2. We employ generalized ef’s of Hα,Σ,

ωλ(x1, x2) = ei(λ+α2/4)1/2x1e−α|x2|/2 ,

their analogues ωz for complex energies and regularizations
ωδ

z(x) = e−δx2

1ωz(x) for z ∈ ρ(Hα,Σ), belonging to D(Hα,Σ).
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Generalized eigenfunctions
We want to find the S-matrix, Sψ−

λ = ψ+
λ , for scattering in

the negative part of the spectrum with a fixed energy
λ ∈ (−1

4α
2, 0) corresponding to the effective momentum

kα(λ) := (λ+ α2/4)1/2. We employ generalized ef’s of Hα,Σ,

ωλ(x1, x2) = ei(λ+α2/4)1/2x1e−α|x2|/2 ,

their analogues ωz for complex energies and regularizations
ωδ

z(x) = e−δx2

1ωz(x) for z ∈ ρ(Hα,Σ), belonging to D(Hα,Σ).

Consider now ψδ
z such that (Hα,Γ − z)ψδ

z = (Hα,Σ − z)ωδ
z .

After taking the limit limǫ→0 ψ
δ
λ+iǫ = ψδ

λ in the topology of L2

the function ψδ
λ still belongs to D(Hα,Σ) and we have

ψδ
λ = ωδ

λ + R
kα(λ)
Σ,ν (Θkα(λ))−1IΛω

δ
λ
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Generalized eigenfunctions, continued

Here R
kα(λ)
Σ,ν is integral operator on the Hilbert space h with

the kernel Gkα(λ)
Σ (x−y) := limε→0G

kα(λ+iε)
Σ (x−y) and

Θkα(λ) := −α−1
Ǐ− R

kα(λ)
Σ,νν are the operators on h with R

kα(λ)
Σ,νν

being the natural embedding . By a direct computation, the
kernel is found to be

G
kα(λ)
Σ (x−y) = K0(i

√
λ|x−y|)

+P
∫ ∞

0

µ0(t;x, y)

t− λ− α2/4
dt+

iα

8kα(λ)
eikα(λ)|x1−y1| e−α/2(|x2|+|y2|),

where

µ0(t;x, y) := − iα

25π

eit1/2(x1−y1) e−(t−λ)1/2(|x2|+|y2|)
1/2

t1/2((t− λ)1/2)
.
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Generalized eigenfunctions, continued

Of course, the pointwise limits ψλ = limδ→0 ψ
δ
λ cease to L2,

however, they still belong to L2 locally and provide us with
the generalized eigenfunction of Hα,Γ in the form

ψλ = ωλ + R
kα(λ)
Σ,ν (Θkα(λ))−1JΛωλ ,

where JΛωλ is an embedding of ωλ to L2(νΛ)
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Generalized eigenfunctions, continued

Of course, the pointwise limits ψλ = limδ→0 ψ
δ
λ cease to L2,

however, they still belong to L2 locally and provide us with
the generalized eigenfunction of Hα,Γ in the form

ψλ = ωλ + R
kα(λ)
Σ,ν (Θkα(λ))−1JΛωλ ,

where JΛωλ is an embedding of ωλ to L2(νΛ)

To find the S-matrix we have to investigate the behavior of
ψλ for |x1| → ∞. By a direct computation, we find that for y
of a compact M ⊂ R

2 and |x1| → ∞ we have

G
kα(λ)
Σ (x−y) ≈ iα

8kα(λ)
eikα(λ)|x1−y1| e−α/2(|x2|+|y2|)
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S-matrix at negative energy
Using this asymptotics we find the sought on-shell S-matrix:

Theorem [E.-Kondej, 2005]: For a fixed λ ∈ (−1
4α

2, 0) the
generalized eigenfunctions behave asymptotically as

ψλ(x) ≈







T (λ) eikα(λ)x1 e−α|x2|/2 for x1 →∞

eikα(λ)x1e−α|x2|/2 +R(λ) e−ikα(λ)x1e−α|x2|/2 for x1 → −∞

where kα(λ) := (λ+ α2/4)1/2 and the transmission and
reflection amplitudes T (λ) ,R(λ) are given respectively by

T (λ) = 1− iα

8kα(λ)

(

(Θkα(λ))−1JΛωλ, JΛωλ

)

h

and

R(λ) =
iα

8kα(λ)

(

(Θkα(λ))−1JΛωλ, JΛω̄λ

)

h
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Strong coupling: a conjecture

Consider Γ which is a C4-smooth local deformation of a
line. In analogy with the spectral result of [E.-Yoshitomi’01]
quoted above one expects that in strong coupling case the
scattering will be determined in the leading order by the
local geometry of Γ through the same comparison operator,
namely KΓ := − d

ds2 − 1
4γ(s)

2 on L2(R).
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Strong coupling: a conjecture

Consider Γ which is a C4-smooth local deformation of a
line. In analogy with the spectral result of [E.-Yoshitomi’01]
quoted above one expects that in strong coupling case the
scattering will be determined in the leading order by the
local geometry of Γ through the same comparison operator,
namely KΓ := − d

ds2 − 1
4γ(s)

2 on L2(R).

Let TK(k), RK(k) be the corresponding transmission and
reflection amplitudes at a fixed momentum k. Denote by
SΓ,α(λ) and SK(λ) the on-shell S−matrixes of Hα,Γ and K
at energy λ, respectively.

Conjecture: For a fixed k 6= 0 and α→∞ we have the
relation

SΓ,α

(

k2 − 1

4
α2
)

→ SK(k2)
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How to find the spectrum?
To say something about resonances, let us return to the
spectral problem. The general results do not tell us how to
find the spectrum for a particular Γ. The options:

Direct solution of the PDE problem Hα,Γψ = λψ is
feasible in a few simple examples only

Workshop “Mathematical Models for Transport in Macroscopic and Mesoscopic Systems”; WIAS, Berlin, February 8, 2008 – p. 26/41



How to find the spectrum?
To say something about resonances, let us return to the
spectral problem. The general results do not tell us how to
find the spectrum for a particular Γ. The options:

Direct solution of the PDE problem Hα,Γψ = λψ is
feasible in a few simple examples only

Using trace maps of Rk ≡ (−∆− k2)−1 and the
generalized BS principle

Rk := Rk
0 + αRk

dx,m[I − αRk
m,m]−1Rk

m,dx ,

where m is δ measure on Γ, we pass to a 1D integral
operator problem, αRk

m,mψ = ψ
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How to find the spectrum?
To say something about resonances, let us return to the
spectral problem. The general results do not tell us how to
find the spectrum for a particular Γ. The options:

Direct solution of the PDE problem Hα,Γψ = λψ is
feasible in a few simple examples only

Using trace maps of Rk ≡ (−∆− k2)−1 and the
generalized BS principle

Rk := Rk
0 + αRk

dx,m[I − αRk
m,m]−1Rk

m,dx ,

where m is δ measure on Γ, we pass to a 1D integral
operator problem, αRk

m,mψ = ψ

discretization of the latter which amounts to a
point-interaction approximations to Hα,Γ
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2D point interactions

Such an interaction at the point a with the “coupling
constant” α is defined by b.c. which change locally the
domain of −∆: the functions behave as

ψ(x) = − 1

2π
log |x− a|L0(ψ, a) + L1(ψ, a) +O(|x− a|) ,

where the generalized b.v. L0(ψ, a) and L1(ψ, a) satisfy

L1(ψ, a) + 2παL0(ψ, a) = 0 , α ∈ R
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2D point interactions

Such an interaction at the point a with the “coupling
constant” α is defined by b.c. which change locally the
domain of −∆: the functions behave as

ψ(x) = − 1

2π
log |x− a|L0(ψ, a) + L1(ψ, a) +O(|x− a|) ,

where the generalized b.v. L0(ψ, a) and L1(ψ, a) satisfy

L1(ψ, a) + 2παL0(ψ, a) = 0 , α ∈ R

For our purpose, the coupling should depend on the set Y
approximating Γ. To see how compare a line Γ with the
solvable straight-polymer model [AGHH]

← r r r r r r r rαn

ℓ/n
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2D point-interaction approximation

Spectral threshold convergence requires αn = αn which
means that individual point interactions get weaker . Hence
we approximate Hα,Γ by point-interaction Hamiltonians
Hαn,Yn

with αn = α|Yn|, where |Yn| := ♯Yn.

Workshop “Mathematical Models for Transport in Macroscopic and Mesoscopic Systems”; WIAS, Berlin, February 8, 2008 – p. 28/41



2D point-interaction approximation

Spectral threshold convergence requires αn = αn which
means that individual point interactions get weaker . Hence
we approximate Hα,Γ by point-interaction Hamiltonians
Hαn,Yn

with αn = α|Yn|, where |Yn| := ♯Yn.

Theorem [E.-Němcová, 2003]: Let a family {Yn} of finite
sets Yn ⊂ Γ ⊂ R

2 be such that

1

|Yn|
∑

y∈Yn

f(y) →
∫

Γ
f dm

holds for any bounded continuous function f : Γ→ C,
together with technical conditions, then Hαn,Yn

→ Hα,Γ

in the strong resolvent sense as n→∞.
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Comments on the approximation

A more general result is valid: Γ need not be a graph
and the coupling may be non-constant
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Comments on the approximation

A more general result is valid: Γ need not be a graph
and the coupling may be non-constant

The result applies to finite graphs, however, an infinite Γ
can be approximated in strong resolvent sense by a
family of cut-off graphs
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Comments on the approximation

A more general result is valid: Γ need not be a graph
and the coupling may be non-constant

The result applies to finite graphs, however, an infinite Γ
can be approximated in strong resolvent sense by a
family of cut-off graphs

The idea is due to Brasche, Figari and Teta, 1998, who
analyzed point-interaction approximations of measure
perturbations with codim Γ = 1 in R

3. There are
differences, however, for instance in the 2D case we
can approximate attractive interactions only
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Scheme of the proof

Resolvent of Hαn,Yn
is given Krein’s formula. Given

k2 ∈ ρ(Hαn,Yn
) define |Yn| × |Yn| matrix by

Λαn,Yn
(k2;x, y) =

1

2π

[

2π|Yn|α+ ln

(

ik

2

)

+ γE

]

δxy

−Gk(x−y) (1−δxy)

for x, y ∈ Yn, where γE is Euler’ constant.
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Scheme of the proof

Resolvent of Hαn,Yn
is given Krein’s formula. Given

k2 ∈ ρ(Hαn,Yn
) define |Yn| × |Yn| matrix by

Λαn,Yn
(k2;x, y) =

1

2π

[

2π|Yn|α+ ln

(

ik

2

)

+ γE

]

δxy

−Gk(x−y) (1−δxy)

for x, y ∈ Yn, where γE is Euler’ constant. Then

(Hαn,Yn
− k2)−1(x, y) = Gk(x−y)

+
∑

x′,y′∈Yn

[

Λαn,Yn
(k2)

]−1
(x′, y′)Gk(x−x′)Gk(y−y′)
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Scheme of the proof

Resolvent of Hα,Γ is given by the generalized BS formula
given above; one has to check directly that the difference of
the two vanishes as n→∞ �
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Scheme of the proof

Resolvent of Hα,Γ is given by the generalized BS formula
given above; one has to check directly that the difference of
the two vanishes as n→∞ �

Remarks:

Spectral condition in the n-th approximation, i.e.
det Λαn,Yn

(k2) = 0, is a discretization of the integral
equation coming from the generalized BS principle
A solution to Λαn,Yn

(k2)η = 0 determines the
approximating ef by ψ(x) =

∑

yj∈Yn
ηjGk(x− yj)

A match with solvable models illustrates the
convergence and shows that it is not fast, slower
than n−1 in the eigenvalues. This comes from singular
“spikes” in the approximating functions
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Finally, the resonances

Consider infinite curves Γ, straight outside a compact, and
ask for examples of resonances. Recall the L2-approach: in
1D potential scattering one explores spectral properties of
the problem cut to a finite length L. It is time-honored trick
that scattering resonances are manifested as avoided
crossings in L dependence of the spectrum – for a recent
proof see Hagedorn-Meller, 2000. Try the same here:
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Finally, the resonances

Consider infinite curves Γ, straight outside a compact, and
ask for examples of resonances. Recall the L2-approach: in
1D potential scattering one explores spectral properties of
the problem cut to a finite length L. It is time-honored trick
that scattering resonances are manifested as avoided
crossings in L dependence of the spectrum – for a recent
proof see Hagedorn-Meller, 2000. Try the same here:

Broken line: absence of “intrinsic” resonances due lack
of higher transverse thresholds

Z-shaped Γ: if a single bend has a significant reflection,
a double band should exhibit resonances

Bottleneck curve: a good candidate to demonstrate
tunneling resonances
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Broken line

α = 1
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Broken line

α = 1
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Z shape with θ =
π
2

α = 5

Lc = 10
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Z shape with θ = 0.32π

�
��
α = 5

Lc = 10
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A bottleneck curve

Consider a straight line defor-
mation which shaped as an
open loop with a bottleneck the
width a of which we will vary
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A bottleneck curve

Consider a straight line defor-
mation which shaped as an
open loop with a bottleneck the
width a of which we will vary ←→ a

← → ← →L L

If Γ is a straight line, the transverse eigenfunction is
e−α|y|/2, hence the distance at which tunneling becomes
significant is ≈ 4α−1. In the example, we choose α = 1
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Bottleneck with a = 5.2
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Bottleneck with a = 2.9
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Bottleneck with a = 1.9
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Open questions

Scattering on leaky graphs: existence and
completeness beyond the local deformation case;
one has to use suitable identification operator
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Open questions

Scattering on leaky graphs: existence and
completeness beyond the local deformation case;
one has to use suitable identification operator

Scattering on leaky curves: strong coupling
asymptotics, proving the stated conjecture
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Open questions

Scattering on leaky graphs: existence and
completeness beyond the local deformation case;
one has to use suitable identification operator

Scattering on leaky curves: strong coupling
asymptotics, proving the stated conjecture

Resonances: existence known only in caricature
models [E.-Kondej’04], try to prove it less trivial
situations
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Open questions

Scattering on leaky graphs: existence and
completeness beyond the local deformation case;
one has to use suitable identification operator

Scattering on leaky curves: strong coupling
asymptotics, proving the stated conjecture

Resonances: existence known only in caricature
models [E.-Kondej’04], try to prove it less trivial
situations

The “L2–approach”: can it be given rigorous meaning
in the present context?
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Open questions

Scattering on leaky graphs: existence and
completeness beyond the local deformation case;
one has to use suitable identification operator

Scattering on leaky curves: strong coupling
asymptotics, proving the stated conjecture

Resonances: existence known only in caricature
models [E.-Kondej’04], try to prove it less trivial
situations

The “L2–approach”: can it be given rigorous meaning
in the present context?

How the scattering looks like at positive energies?
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Open questions

Scattering on leaky graphs: existence and
completeness beyond the local deformation case;
one has to use suitable identification operator

Scattering on leaky curves: strong coupling
asymptotics, proving the stated conjecture

Resonances: existence known only in caricature
models [E.-Kondej’04], try to prove it less trivial
situations

The “L2–approach”: can it be given rigorous meaning
in the present context?

How the scattering looks like at positive energies?

etc., etc.
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[EK02] P.E., S. Kondej: Curvature-induced bound states for a δ interaction supported by a
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[EK03] P.E., S. Kondej: Bound states due to a strong δ interaction supported by a curved
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[EN03] P.E., K. Němcová: Leaky quantum graphs: approximations by point interaction

Hamiltonians, J. Phys. A36 (2003), 10173-10193.
[EY01] P.E., K. Yoshitomi: Band gap of the Schrödinger operator with a strong δ-interaction

on a periodic curve, Ann. H. Poincaré 2 (2001), 1139-1158.
[EY02a] P.E., K. Yoshitomi: Asymptotics of eigenvalues of the Schrödinger operator with a

strong δ-interaction on a loop, J. Geom. Phys. 41 (2002), 344-358.
[EY02b] P.E., K. Yoshitomi: Persistent currents for 2D Schrödinger operator with a strong

δ-interaction on a loop, J. Phys. A35 (2002), 3479-3487.

for more information see http://www.ujf.cas.cz/ ẽxner
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