Time averaging for the strongly confined nonlinear Schrödinger equation, using almost periodicity.

Naoufel BEN ABDALLAH Université Toulouse III

François CASTELLA Université Rennes 1

Florian MÉHATS Université Rennes 1

Introduction

- Asymptotic behavior of a nonlinear gas of quantum particles, evolving in $\mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R} \ni (x,z)$, strongly confined along the vertical z direction
- \rightarrow asymptotic dynamics should occur along the **remaining** x **plane**.
- → Can one describe the limiting dynamics?
- In other words:

$$i\partial_t \Psi^{\varepsilon}(t, x, z) = H_x \Psi^{\varepsilon} + \frac{1}{\varepsilon} H_z \Psi^{\varepsilon} + F(|\Psi^{\varepsilon}|^2) \Psi^{\varepsilon},$$

 $\Psi^{\varepsilon}(t = 0, x, z) = \text{"smooth"},$

where the Hamiltonians H_x and H_z (in the x and z directions) are

$$H_x = -\Delta_x + V(x)$$
 with $V(x)$ "arbitrary", $H_z = -\partial_z^2 + V_{\rm C}(z)$ with $V_{\rm C}(z)$ confining. (H_z has discrete spectrum).

Question:
$$\Psi^{\varepsilon}(t,x,z) \underset{\varepsilon \to 0}{\longrightarrow}$$
 ???

Formal analysis

ullet Eigenenergies/functions of H_z :

$$H_z\chi_p(z)=E_p\chi_p(z), \qquad \text{where} \quad E_0\leq E_1\leq \cdots \leq E_p\underset{p\to\infty}{\longrightarrow}+\infty.$$

• **Projecting** the equations on the χ_p 's produces (say $F(|\Psi^{\varepsilon}|^2) = |\Psi^{\varepsilon}|^2$):

$$\psi_p^{\varepsilon}(t,x) = \langle \Psi^{\varepsilon}, \chi_p \rangle(t,x),$$

$$i\partial_t \psi_p^{\varepsilon}(t,x) = H_x \psi_p^{\varepsilon} + \frac{E_p}{\varepsilon} \psi_p^{\varepsilon} + \sum_{q,r,s} \langle \chi_q \chi_r, \chi_s \chi_p \rangle \psi_q^{\varepsilon} \psi_r^{\varepsilon} \psi_s^{\varepsilon}.$$

• Filtering out the oscillations (Schochet, Grenier) produces :

$$\begin{split} \phi_p^{\varepsilon}(t,x) &= \exp\left(+it\frac{E_p}{\varepsilon}\right) \, \psi_p^{\varepsilon}(t,x), \\ i\partial_t \phi_p^{\varepsilon}(t,x) &= H_x \phi_p^{\varepsilon} + \sum_{q,r,s} \exp\left(+it\frac{E_q - E_r + E_s - E_p}{\varepsilon}\right) \, \langle \chi_q \chi_r, \chi_s \chi_p \rangle \phi_q^{\varepsilon} \, \phi_r^{\varepsilon} \, \phi_s^{\varepsilon} \\ &= O(1). \end{split}$$

Now:
$$\phi_p^{\varepsilon} \to ???$$

Formal analysis (bis)

System of nonlinear, coupled ODE's, of the form,

$$\partial_t u_{\varepsilon} = Au_{\varepsilon} + B\left(\frac{t}{\varepsilon}, u_{\varepsilon}\right).$$

 \rightarrow provided $B(\tau,.)$ possesses some **ergodicity** in τ , should go to

$$\partial_t u = Au + B_{av}(u),$$

$$B_{av}(u) := \lim_{T \to \infty} \frac{1}{T} \int_0^T B(\tau, u) d\tau.$$

- ullet In our case, B(au,.) has **countably many** frequencies
- $\rightarrow B$ is almost-periodic, hence ergodic, and, formally

$$\begin{split} \phi_p^\varepsilon &\to \phi_p(t,x),\\ \text{with} \ : \quad i\partial_t \phi_p = H_x \phi_p + \sum_{q,r,s} \mathbf{1}[E_q - E_r + E_s - E_p = \mathbf{0}] \langle \chi_q \chi_r, \chi_s \chi_p \rangle \phi_q \, \phi_r \, \phi_s, \end{split}$$

$$\left(1[E_q - E_r + E_s - E_p = 0] = \lim_{T \to \infty} \frac{1}{T} \int_0^T \exp\left(+i\tau [E_q - E_r + E_s - E_p]\right) d\tau\right).$$

Difficulties

control of the coefficients

$$\langle \chi_q \chi_r, \chi_s \chi_p \rangle$$

and of the series

$$\sum_{q,r,s} \langle \chi_q \chi_r, \chi_s \chi_p \rangle \cdots$$

- \rightarrow out of reach even in the case $H_z =$ harmonic oscillator!
- control of the small denominators

$$\frac{1}{T} \int_0^T \exp\left(+i\tau (E_q - E_r + E_s - E_p)\right) d\tau \sim \frac{1[E_q - E_r + E_s - E_p \neq 0]}{E_q - E_r + E_s - E_p}$$

 \rightarrow **out of reach** in general (the E_p 's are arbitrary).

How to make the analysis rigorous

1- Assume $\Psi^{\varepsilon}(t=0)=\psi^{\varepsilon}_0(t=0,x)\times\chi_0(z)$ (lowest energy). Then, energy estimate provides, for any time t, $\Psi^{\varepsilon}(t)=\psi^{\varepsilon}_0(t,x)\times\chi_0(z)+$ small.

All the above systems are then **scalar**! (Ben Abdallah-Méhats, Ben Abdallah-Méhats-Schmeiser-Weishäupl, see also Ben Abdallah-Méhats-Pinaud).

2- Formally truncate the system for finitely many modes (Bao-Markowich-Schmeiser-Weishäupl).

3- In this talk:

we provide a clean procedure to tackle the general case. we also justify the formal truncated problems studied previously.

Key idea:

avoid projecting the equations, exploit almost-periodicity.

A clean procedure

1- Define

$$\Phi^{\varepsilon}(t, x, z) = \exp\left(+it\frac{H_z}{\varepsilon}\right) \Psi^{\varepsilon}.$$

We have

$$i\partial_t \Phi^{\varepsilon} = H_x \Phi^{\varepsilon} + \exp\left(+it\frac{H_z}{\varepsilon}\right) F\left(\left|\exp\left(+it\frac{H_z}{\varepsilon}\right) \Phi^{\varepsilon}\right|^2\right) \exp\left(+it\frac{H_z}{\varepsilon}\right) \Phi^{\varepsilon}.$$

In other words

$$i\partial_t \Phi^{\varepsilon} = H_x \Phi^{\varepsilon} + G\left(\frac{t}{\varepsilon}, \Phi^{\varepsilon}\right),$$

where,

$$G(\tau, u) = \exp(+i\tau H_z) F(|\exp(-i\tau H_z) u|^2) \exp(-i\tau H_z) u.$$

A clean procedure (bis)

2- Observe that for any $\ell \geq 0$,

$$\|\Psi^{\varepsilon}\|_{L^{2}}, \quad \|H^{\ell}_{x}\,\Psi^{\varepsilon}\|_{L^{2}}, \quad \|H^{\ell}_{z}\,\Psi^{\varepsilon}\|_{L^{2}},$$

are **bounded**, **uniformly in** ε .

This is because H_x and H_z commute with $H_x + \frac{H_z}{\varepsilon}$. Similar bounds for Φ^{ε} .

→ Define the Sobolev space

$$B_{\ell} = \left\{ u \in L^2 \text{ s.t. } H_x^{\ell/2} u \in L^2, \quad H_z^{\ell/2} u \in L^2 \right\}.$$

A clean procedure (ter)

Main result B_{ℓ} is an **algebra**, whenever $\ell > 3/2$.

The B_{ℓ} norm **identifies** with

$$\|u\|_{H^{\ell}} + \|V(x)^{\ell/2}u\|_{L^2} + \|V_{\mathsf{C}}(z)^{\ell/2}u\|_{L^2}$$

For any given $u \in B_{\ell}$, the function

$$\tau \mapsto G(\tau, u) = \exp(+i\tau H_z) F(|\exp(-i\tau H_z) u|^2) \exp(-i\tau H_z) u.$$

is almost periodic, with values in B_{ℓ} .

Corollary Φ^{ε} goes to Φ , solution to

$$i\partial_t \Phi = H_x \Phi + G_{av}(\Phi),$$

where

$$G_{\mathsf{av}}(\Phi) := \lim_{T \to \infty} \frac{1}{T} \int_0^T G(\tau, \Phi) d\tau.$$

Comments

- This result allows to recover all known results.
- \bullet Also allows to recover the **explicit value** of G_{av} when at hand.
- One can **project a posteriori** the limiting equation and recover the formal model obtained at the begining.
- Allows to circumvent the difficulties linked with **small denominators** and with **convergence of series** $\sum_{q,r,s} \cdots$ at once.
- Allows to describe how the various modes are switched on, starting from an initial datum carrying given modes.
- Justifies the truncated problems, which are shown to converge towards the untruncated ones as the truncation parameter goes to infinity.

• Works exploiting a similar parallel with ODE's of the form $\partial_t u_\varepsilon = Au_\varepsilon + B(t/\varepsilon, u_\varepsilon)$, in relation with the **"ergodicity"** of B: Schochet, Métivier-Schochet, Grenier, Lannes, Bidégaray-Castella-Degond, Castella-Goudon-Degond, ...

Idea of proof

• H_x^{ℓ} resp. H_z^{ℓ} have "symbol" $\left(\xi^2 + V(x)\right)^{\ell}$ resp. $\left(\zeta^2 + V_{\mathsf{C}}(z)\right)^{\ell}$.

Since

$$\left(\xi^2 + V(x)\right)^{\ell} \sim \xi^{2\ell} + V(x)^{\ell}$$
 resp. $\left(\zeta^2 + V_{\mathsf{C}}(z)\right)^{\ell} \sim \zeta^{2\ell} + V_{\mathsf{C}}(z)^{\ell}$,

we recover the equivalences:

$$||u||_{L^{2}}^{2} + ||H_{x}^{\ell/2} u||_{L^{2}}^{2}$$

$$\sim ||u||_{L^{2}}^{2} + ||(-\Delta_{x})^{\ell/2} u||_{L^{2}}^{2} + ||V(x)^{\ell/2} u||_{L^{2}}^{2}$$

and

$$||u||_{L^{2}}^{2} + ||H_{z}^{\ell/2} u||_{L^{2}}^{2}$$

$$\sim ||u||_{L^{2}}^{2} + ||(-\partial_{z}^{2})^{\ell/2} u||_{L^{2}}^{2} + ||V_{c}(z)^{\ell/2} u||_{L^{2}}^{2}.$$

Idea of proof (bis)

• **Difficulty**: define the notion of symbol, i.e. how to count powers of $|\xi|$, $|\zeta|$ **AND** powers of V(x), $V_{\rm C}(z)$.

Case when V, $V_{\rm C} =$ harmonic oscillators : Helffer.

General case: Weyl-Hörmander calculus of Bony-Chemin, and recent adaptations by Helffer-Nier.

Here: adaptation of Helffer-Nier.

Idea of proof (ter)

• where does almost-periodicity come from?

Idea:

given u, $\tau \mapsto \exp(i\tau H_z)u$ has countably many frequencies : it actually is the uniform limit of trigonometric polynomials.

Next, for any smooth function f, the function $\tau \mapsto f(\exp(i\tau H_z)u)$ has countably many frequencies as well: it is the uniform limit of trigonometric polynomials.

Idea of proof (last)

• Last argument : given a large $T(\varepsilon) \ll 1/\varepsilon$, introduce

$$i\partial_t \Phi^{\varepsilon} = H_x \Phi^{\varepsilon} + G\left(\frac{t}{\varepsilon}, \Phi^{\varepsilon}\right),$$

$$i\partial_t \Phi = H_x \Phi + G_{\text{av}}(\Phi),$$

$$i\partial_t \widetilde{\Phi^{\varepsilon}} = H_x \widetilde{\Phi^{\varepsilon}} + \widetilde{G_{\varepsilon}}\left(\frac{t}{\varepsilon}, \widetilde{\Phi^{\varepsilon}}\right),$$

where

$$G_{\text{av}}\left(\Phi\right) = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} G(\tau, \Phi) \, d\tau, \qquad \widetilde{G_{\varepsilon}}\left(\frac{t}{\varepsilon}, \widetilde{\Phi^{\varepsilon}}\right) = \frac{1}{T(\varepsilon)} \int_{0}^{T(\varepsilon)} G\left(\frac{t}{\varepsilon} + \tau, \widetilde{\Phi^{\varepsilon}}\right) \, d\tau.$$

Then,

$$G - \widetilde{G_{\varepsilon}} \sim \varepsilon T(\varepsilon)$$
 ("integration by parts")
$$\widetilde{G_{\varepsilon}} - G_{\text{av}} \sim \frac{\delta(\varepsilon)}{\varepsilon T(\varepsilon)} \quad (\delta(\varepsilon) \to 0 \text{ due to the definition of } G_{\text{av}}).$$

 \rightarrow chose $T(\varepsilon) = \sqrt{\delta(\varepsilon)}/\varepsilon$.

(Ideas borrowed from the ODE context : Sanders-Verhulst, Lochak-Meunier, ...)