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Goal

@ stationary Schrédinger equation (1d):

2
f—mwxx(XH(E—V(x)w(X) — 0
———

>a>0

with inhomogeneous open BCs — reformulate as IVP
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GOAL: accurate numerical scheme that does NOT NEED to resolve the
oscillations
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Outline:

@ transformation of ODE — separate highly oscillatory
term & smooth perturbation

Q@ approximation of oscillatory integrals
© error orders

O numerical example
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vector valued ODEs

@ revisit problem of Lorenz, Jahnke, Lubich [LJL 2005]
@ inital value problem: v(x) € C¢

W'(X) + ngA(X) w(X) = 0, xe¢ (XO’Xend)
(%) = o,
V(%) = -
@ assumptions: R9%9 5 A(x) = Q(x)a(x)Q*(x) > 0

» Q(x) orthogonal, smooth
» a diagonal smooth
> eigenvalues a; remain separated:

ak(x) —alx)[ =0, a(x) >

N[=

5, k#I
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Separation of highly oscillatory term + slow perturbation
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Separation of highly oscillatory term + slow perturbation

1 .
o the ansatz u; := 9, up := cA™ 29/ yields

, 1 0 A 0 0
el At oo )Y Lo oAy |

o diagonalisation of the first matrix via v := Pu:

S S I DR O I A
A N R B A N A B

+1®(QYQ) v,
o= %Q*A_%(A%)’Q.

(® denotes the Kronecker product)
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Explicit transformation of high oscillations

@ to simplify notation let d =1 (Schrédinger equ., a(x) = V(x) — E):

1 0 g (1 i
0 -1 )Y w=\ ;i 1)V

o def. phase (exactly integrable for V/(x) piecewise linear, e.g.):
_i¢

o(x) = / a%(s) ds (w=e %)
F(x) = exp <— i < é _01 >¢(X)> =: ( Cg g )
@letn:=Fv
, s 1 —iw?
o= —E<iwz /1w )77::977

= new system matrix is e—uniformly bounded = 7 “smoother
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numerical integration

9 let xg < x1 < -+ < XN = Xenq be an equidistant grid with stepsize
h = |xn — Xpt1]

@ goal: second order scheme

@ integration from x, to x,4+1 yields
Xn+1
ma = et [ ) ds
o s
—i—/ Q(s)/ Q(r)n(r) dr ds
’ Xn+1 ’
= Tn +/ Q(S) ds 1n

Xn41 S
—i—/ i Q(s)/ Q(r) dr ds 0, + O(h®)
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Approximation of the Integral

@ use standard quadrature rules for the diagonal of the first integral
(non-oscillating entries)

@ the off-diagonal elements have the same structure, i.e.

Xn+1 Xn+1 i ,
1 = / Qp1(s) ds = —/ e%‘z’(s)-%(ss)) ds

n

@ two strategies

© replacing ¢ by ¢, + s¢), + %qb;,’ leads to the adiabatic midpoint rule
proposed by [LJL] (integration interval: [x,—1, Xa11]!)

@ manipulate Z—; in order to exactly integrate the remaining integral
(AA, Ben Abdallah, Negulescu)
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Details for integral strategy (2)

o factorize the integrand (¢’ = a) in:

I = j— /Xn+1 e%(b(s) 2’d)/(5) . B 13 a/(s) dS
Xn %,_8/ 2i¢/(s) 43(5)
2i \/ .
:(e€¢) woscll. o ugooth”

IDEA: approximate only the smooth factor, integrate oscill. factor
exactly

@ approximate f:
f ~ a+ ¢ (— second order)
«, 3 are determined by interpolation

@ the double integral is treated analogously
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Properties of the scheme

@ both strategies yield a scheme of O(h?)

@ error estimates independent of ¢,
even for h > ¢ (if phase ® = [ \/a(s) ds is exact)

@ both methods are exact for constant A

@ the oscillatory integrals are of order &:

b b
?(x) . ¢ @
/aeaf(x)dx = /aes?-%fdx

— ?5
= eaaf

X=a

Is it possible to benefit from these property?
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Improved scheme

@ previous equation:

;@ (10 +_a_’ 0 w?
n_4a01nl4a—w20n

. . 1
@ “remove” the diagonal part by transformation: w := a#(x) n

/ 2
;.4 0 w . Q o —j®
woo= i— 2 g w = w, w=e¢e '

4a \ —w
@ same structure as n—equation
= replace Q by € in the previous numerical scheme
@ strong e—limit: w(x) = w(xp) (for a(x) smooth)
@ improved error estimate: O(min(h,¢) - h) !

@ scheme asymptotically correct as ¢ — 0 (for h = const !)
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Numerical Example

@ example from [LJL 2005]: d = 2, x € [-1,1]

1 10 exa (1 0
az(x) = (%X"'?’)(O 1>+ §+4(0 _1)

o = (T ) i

) = F+zarctan(3)

@ error in [LJL 2005]: O(h?) (uniformly in &)
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rel. L-Fehler in n
T T

——¢&=1e-02

@ error of improved scheme: O(min(h,¢) - h)

@ work in progress: error = O(eh?) (with “"better” transformations)
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