TECHNISCHE UNIVERSITÄT WIEN

Asymptotically correct finite difference schemes for highly oscillatory ODEs

Anton ARNOLD

with J. Bierwirth (Vienna), N. Ben Abdallah (Toulouse), C. Negulescu (Marseille)

TU Vienna Institute for Analysis and Scientific Computing

Berlin, February 2008

Goal

stationary Schrödinger equation (1d):

$$\frac{\hbar^2}{2m} \psi_{xx}(x) + \underbrace{\left(E - V(x)\right)}_{\geq \alpha > 0} \psi(x) = 0$$

with inhomogeneous open $\mathsf{BCs} \to \mathsf{reformulate}$ as IVP

GOAL: accurate numerical scheme that does NOT NEED to resolve the oscillations

Outline:

- transformation of ODE \rightarrow separate highly oscillatory term & smooth perturbation
- approximation of oscillatory integrals
- error orders
- numerical example

vector valued ODEs

- revisit problem of Lorenz, Jahnke, Lubich [LJL 2005]
- inital value problem: $\psi(x) \in \mathbb{C}^d$

$$\psi''(x) + \frac{1}{\varepsilon^2} A(x) \psi(x) = 0, \quad x \in (x_0, x_{end})$$

 $\psi(x_0) = \psi_0,$
 $\psi'(x_0) = \psi'_0.$

- assumptions: $\mathbb{R}^{d \times d} \ni A(x) = Q(x)a(x)Q^*(x) > 0$
 - ightharpoonup Q(x) orthogonal, smooth
 - ▶ a diagonal smooth
 - eigenvalues a_i remain separated:

$$|a_k(x) - a_l(x)| \ge \delta$$
, $a_k(x) \ge \frac{1}{2}\delta$, $k \ne l$

Separation of highly oscillatory term + slow perturbation

• the ansatz $u_1 := \psi$, $u_2 := \varepsilon A^{-\frac{1}{2}} \psi'$ yields

$$u' = \frac{1}{\varepsilon} \begin{pmatrix} 0 & A^{\frac{1}{2}} \\ -A^{\frac{1}{2}} & 0 \end{pmatrix} u - \begin{pmatrix} 0 & 0 \\ 0 & A^{-\frac{1}{2}}(A^{\frac{1}{2}})' \end{pmatrix} u.$$

Separation of highly oscillatory term + slow perturbation

• the ansatz $u_1 := \psi$, $u_2 := \varepsilon A^{-\frac{1}{2}} \psi'$ yields

$$u' = \frac{1}{\varepsilon} \begin{pmatrix} 0 & A^{\frac{1}{2}} \\ -A^{\frac{1}{2}} & 0 \end{pmatrix} u - \begin{pmatrix} 0 & 0 \\ 0 & A^{-\frac{1}{2}}(A^{\frac{1}{2}})' \end{pmatrix} u.$$

• diagonalisation of the first matrix via v := Pu:

$$egin{array}{lll} v'&=&rac{i}{arepsilon}\left(egin{array}{cc} 1&0\0&-1\end{array}
ight)\otimes a^{rac{1}{2}}\,v-\left(egin{array}{cc} 1&-i\i&1\end{array}
ight)\otimes \mu\,\,v\ &+&I\otimes \left(Q^{*\prime}Q\right)\,v\;, \ \mu&:=&rac{1}{2}Q^*A^{-rac{1}{2}}(A^{rac{1}{2}})'Q\;. \end{array}$$

(⊗ denotes the Kronecker product)

Explicit transformation of high oscillations

• to simplify notation let d = 1 (Schrödinger equ., a(x) = V(x) - E):

$$v' = \frac{i}{\varepsilon} a^{\frac{1}{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} v - \frac{a'}{4a} \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix} v$$

• def. phase (exactly integrable for V(x) piecewise linear, e.g.):

$$\phi(x) := \int_{x_0}^x a^{\frac{1}{2}}(s) ds$$
 $(\omega = e^{-\frac{i\phi}{\varepsilon}})$

$$F(x) := \exp\left(-\frac{i}{\varepsilon}\begin{pmatrix}1 & 0 \\ 0 & -1\end{pmatrix}\phi(x)\right) =: \begin{pmatrix}\omega & 0 \\ 0 & \overline{\omega}\end{pmatrix}$$

• let $\eta := F v$

$$\eta' = -\frac{a'}{4a} \begin{pmatrix} 1 & -i\omega^2 \\ i\overline{\omega}^2 & 1 \end{pmatrix} \eta =: \Omega \eta$$

 \Rightarrow new system matrix is arepsilon-uniformly bounded $\Rightarrow \eta$ "smoother"

numerical integration

- let $x_0 < x_1 < \cdots < x_N = x_{end}$ be an equidistant grid with stepsize $h = |x_n x_{n+1}|$
- goal: second order scheme
- integration from x_n to x_{n+1} yields

$$\eta_{n+1} = \eta_n + \int_{x_n}^{x_{n+1}} \Omega(s) \, ds \, \eta_n \\
+ \int_{x_n}^{x_{n+1}} \Omega(s) \int_{x_n}^{s} \Omega(r) \eta(r) \, dr \, ds \\
= \eta_n + \int_{x_n}^{x_{n+1}} \Omega(s) \, ds \, \eta_n \\
+ \int_{x_n}^{x_{n+1}} \Omega(s) \int_{x_n}^{s} \Omega(r) \, dr \, ds \, \eta_n + \mathcal{O}(h^3)$$

Approximation of the Integral

- use standard quadrature rules for the diagonal of the first integral (non-oscillating entries)
- the off-diagonal elements have the same structure, i.e.

$$\mathcal{I} := \int_{x_n}^{x_{n+1}} \Omega_{21}(s) \ ds = -\int_{x_n}^{x_{n+1}} e^{\frac{2i}{\varepsilon}\phi(s)} \cdot \frac{a'(s)}{4a(s)} \ ds$$

- two strategies
 - replacing ϕ by $\phi_n + s\phi_n' + \frac{s^2}{2}\phi_n''$ leads to the *adiabatic midpoint rule* proposed by [LJL] (integration interval: $[x_{n-1}, x_{n+1}]!$)
 - e manipulate $\frac{a'}{4a}$ in order to exactly integrate the remaining integral (AA, Ben Abdallah, Negulescu)

Details for integral strategy (2)

• factorize the integrand $(\phi' = a)$ in:

$$\mathcal{I} = -\int_{x_n}^{x_{n+1}} \underbrace{e^{\frac{2i}{\varepsilon}\phi(s)} \frac{2i\phi'(s)}{\varepsilon}}_{=(e^{\frac{2i}{\varepsilon}\phi})' \dots \text{ oscill.}} \cdot \underbrace{\frac{\varepsilon}{2i\phi'(s)} \frac{a'(s)}{4a(s)}}_{=:f \dots \text{ "smooth"}} ds$$

IDEA: approximate only the smooth factor, integrate oscill. factor exactly

- approximate f: $f \approx \alpha + \beta \phi$ (\rightarrow second order) α , β are determined by interpolation
- the double integral is treated analogously

Properties of the scheme

- both strategies yield a scheme of $\mathcal{O}(h^2)$
- error estimates independent of ε , even for $h > \varepsilon$ (if phase $\Phi = \int \sqrt{a(s)} \, ds$ is exact)
- both methods are exact for constant A
- the oscillatory integrals are of order ε :

$$\int_{a}^{b} e^{\frac{\phi(x)}{\varepsilon}} f(x) dx = \int_{a}^{b} e^{\frac{\phi}{\varepsilon}} \frac{\phi'}{\varepsilon} \cdot \frac{\varepsilon}{\phi'} f dx$$
$$= e^{\frac{\phi}{\varepsilon}} \frac{\varepsilon}{\phi'} f \Big|_{x=a}^{b} - \varepsilon \int_{a}^{b} e^{\frac{\phi}{\varepsilon}} \left(\frac{f}{\phi'}\right)' dx$$

Is it possible to benefit from these property?

Improved scheme

previous equation:

$$\eta' \ = \ -\frac{\mathit{a'}}{\mathit{4a}} \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \ \eta + \mathit{i} \frac{\mathit{a'}}{\mathit{4a}} \left(\begin{array}{cc} 0 & \omega^2 \\ -\overline{\omega}^2 & 0 \end{array} \right) \ \eta$$

• "remove" the diagonal part by transformation: $w:=a^{\frac{1}{4}}(x)$ η

$$w' = i \frac{a'}{4a} \begin{pmatrix} 0 & \omega^2 \\ -\overline{\omega}^2 & 0 \end{pmatrix} w = \tilde{\Omega} w, \quad \omega = e^{-i\frac{\Phi}{\varepsilon}}$$

- same structure as η -equation \Rightarrow replace Ω by $\tilde{\Omega}$ in the previous numerical scheme
- strong ε -limit: $w(x) = w(x_0)$ (for a(x) smooth)
- improved error estimate: $\mathcal{O}(\min(h,\varepsilon) \cdot h)$!
- scheme asymptotically correct as $\varepsilon \to 0$ (for h = const !)

Numerical Example

• example from [LJL 2005]: d = 2, $x \in [-1, 1]$

$$\begin{array}{lcl} a^{\frac{1}{2}}(x) & = & \left(\frac{3}{2}x+3\right)\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) + \frac{\sqrt{x^2+4}}{2}\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \\ Q(x) & = & \left(\begin{array}{cc} \cos\xi(x) & -\sin\xi(x) \\ \sin\xi(x) & \cos\xi(x) \end{array}\right) \;, \; \text{with} \\ \xi(x) & = & \frac{\pi}{4} + \frac{1}{2}\arctan\left(\frac{x}{2}\right) \end{array}$$

• error in [LJL 2005]: $\mathcal{O}(h^2)$ (uniformly in ε)

- error of improved scheme: $\mathcal{O}(\min(h, \varepsilon) \cdot h)$
- ullet work in progress: error $=\mathcal{O}(arepsilon h^2)$ (with "better" transformations)