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Metastability is a dynamical phenomenon where a system under the influence of stochastic 
dynamics moves between different regions on different timescales. Reword simpler

In physical systems, this takes the form of transitions between different local energy valleys. 

What is metastability?
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Metastability continued
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Metastability continued
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Metastability continued
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Ising model on a grid



Metastability continued

Let                  be a Markov process over     ,  and  let                                                           be our 
candidate metastable set collection 
Let us define the return time to a set              by

Then                     is said to be   -metastable with respect to the collection         if and only if

Each        is hard to leave for the others 

There must not be other hard to leave sets
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How to study metastability?

The geometry of the free energy landscape gives us information about metastability

• Global minimum stable state
• Local minima  metastable state
• Saddle points   gates/critical droplets

A central quantity is the mean hitting time from a metastable to a metastable set.

Hitting times between metastable sets behave like exponential RVs (no memory)

Metastable systems recover Arrhenius law: for

Typically, trajectories in state space pass through from gates/critical droplets.

Trough potential theory we will obtain explicit expressions for the hitting time.
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The CWP model

• Mean field spin particle model, with configuration space

• CWP Hamiltonian given by

• Equilibrium Gibbs measure given by

• Can be expressed in terms of empirical 
magnetization.
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• Symmetry on both colors and positions.



The CWP model: empirical magnetization
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The DCWP model

•                                          triangular array with i.i.d mean 1 entries variance  
                                              (+regularity conditions)

• CWP Hamiltonian given by

• Can’t be expressed in terms of the empirical magnetization. 

• Depending on the edge weights, can thought as a Potts 
model over a random graph (Erdős–Rényi, multiedge)

• Gibbs measure       analogously defined

• Close to CWP Hamiltonian:

• Breaks the position symmetry (edge weights)
• Maintains color symmetry (absence of magnetic field)
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Glauber dynamics

Both models can be endowed with spin flip dynamics: let                     adjacent 
configurations, then define                        on         with transition probabilities  

Analogously define                         .              
                are their reversible measures

is a Markov process (lumping property). Closest neighbor weighted 
random walk with reversible measure

is not a Markov process.
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Glauber dynamics

12



Lumped annealed free energy landscape, q=3

Not metastable Metastable, 
one global minimum

3 local minima

Metastable, 
one local minimum

3 global minima

Metastable, 
3 global minima

• Due to symmetry metastable regimes are degenerate: multiple minima with the same energy.
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Simulations for the DCWP model

Sampling via
simulations
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Key questions

Assume                           is such that the CWP model is            -metastable with respect to the 
sets                    

Q: Is the DCWP model metastable for the same     and metastable sets?
A: Yes ,with probability going to 1 and metastability constant                             . 
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Start defining

Let                                                         and          the last  exit biased distribution.

Q: What can we say about the mean hitting time                   ?
A: Two types of results: moment and tail estimates.

Q: What can we say about different    ,     ?
A: 



Main Theorems

The CWP and DCWP capacities and measures deviate by an order of             with 
probability going to 1, preserving the exponential order on the r.h.s..

Strategy of proof: from the potential-theoretic definition of metastability
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Main Theorems
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Main Theorems
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Sketch of proof for Theorem 3:

Concentration inequality
for Lipschitz functions Annealed estimates

metastability let’s us approximate the log of the harmonic sum by the depth 
of the valley, which is Lipschitz on the random weights.

Variational principles let us estimate capacity.



Challenges

Consider the regime defined by

No estimates for                  in

This can be solved by use of symmetries for the CWP model via lumped process and color symmetry use, 
but not (yet) for DCWP. 
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Potential theory

Translates the problem of understanding the metastable behaviour of Markov 
processes to the study of capacities of electric networks/boundary problems.

Key formulas:

Harmonic function

Capacity between two sets

Expression for (biased) hitting 
time

The capacity has upper and lower bounds coming from variational principles!
Metastability can be rephrased in terms of comparison of capacities.

21


	Slide 1: Metastability For the DCWP Model with Glauber dynamics Vicente Lenz 
	Slide 2: What is metastability?
	Slide 3: Metastability continued
	Slide 4: Metastability continued
	Slide 5: Metastability continued
	Slide 6: Metastability continued
	Slide 7: How to study metastability?
	Slide 8: The CWP model
	Slide 9: The CWP model: empirical magnetization
	Slide 10: The DCWP model
	Slide 11: Glauber dynamics
	Slide 12: Glauber dynamics
	Slide 13: Lumped annealed free energy landscape, q=3
	Slide 14: Simulations for the DCWP model
	Slide 15: Key questions
	Slide 16: Main Theorems
	Slide 17: Main Theorems
	Slide 18: Main Theorems
	Slide 19: Challenges
	Slide 20: References
	Slide 21: Potential theory

