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Continuum Percolation in
Random Environments

Benedikt Jahnel

SPP2265 Summerschool Berlin: Probability and Geometry on Configuration Spaces, July 2023




Setting: Boolean models for Cox point processes

= X = (X;);e; = stationary Cox point process in R¢, i.e., Poisson point process
(PPP) with stationary random intensity measure A where E[A([0, 1]%)] < oo

= 0; = i.i.d. interaction radius of X; with P(g; > 0) > 0

«C =, ; By (X;) = Cox—Boolean model, where B,(x) = ball with radius
r > 0 centered at z € R

Figure: Realization of a Cox—Boolean model (blue) based on a Cox point process (red) with directing measure given by a
realization of a Poisson—Voronoi tessellation (black).
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Examples: Singular random environments

= Singular random intensity measure, e.g.,

= A(dx) = 1 (S N dx), where vy is one-dimensional Hausdorff measure and S C RY = stationary random segment
process such as
» Poisson—Voronoi tessellation (PVT),
» Poisson—Delaunay tessellation (PDT),
= Poisson line tessellation (PLT),
= Manhattan grid (MG), etc.

Figure: Realization of a Cox—Boolean model (blue) based on a Cox point process (red) with directing measure given by a
realization of a Poisson—\Voronoi tessellation (black).
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Examples: Absolutely continuous random environments

» A(dz) = ¢,dx = absolutely continuous random intensity measure, e.g.,

s 0, = ANl{z € Z} + N1{z € Z}, where = C R stationary random closed set and A, \ > 0
= 0, = > . k(Y; — x) = shot-noise field, where (Y; )7 stationary PPP and x: R? — [0, 00) integrable
w Uy =AY, H{|Y: — 2| < pi} where (Y]);cr stationary PPP with i.i.d. marks p; and A > 0

Figure: Realization of a Cox—Boolean model (blue) based on a Cox point process (red) with directing measure given by an
independent Poisson—Boolean model with fixed radii (green).
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Complete coverage and one-dimensional triviality

Proposition (No complete coverage)

Foralld > 1, E[¢?] < oo implies P(C = R?) < 1. If additionally A is ergodic, then
P(C = RY) = 0.

Proposition (One-dimensional triviality)

Letd = 1 and A ergodic, then [E[p| < oo implies
IP(C contains unbounded connected component) = 0.

= Stationary point processes: E[¢?] = co = P(C = R%) =1
Meester & Roy '96: Continuum Percolation, Cambridge University Press

= Stationary PPP, d = 1: E[p| < oo = IP(C contains unbounded component) = (

Meester & Roy '96: Continuum Percolation, Cambridge University Press

= Rectangular lilypond models: Hirsch *16: On the absence of percolation in a line-segment based lilypond

model, Ann. Henri Poincaré 52

= 2-degree random graphs: Tébias & J '22: Absence of percolation in graphs based on stationary point

processes with degrees bounded by two, Random Structures and Algorithms
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Essentially connected environments

Definition (Essential r-connectedness)

Letr > 0and Q, = |[—a, oz]d. The stationary random measure A is essentially
r-connected, if there exists a random field of connectivity radii R = { R, },cRd,
defined on the same probability space as A\, such that

1. (A, R) are jointly stationary,
2. hm@Too P(Supye%m Q¢ Ry > C\f) = (), and

3. for all &« > 1, whenever SUPy ey Q4 R, < a/2, we have that for all

T,y € supp(/\@a) there exists a finite sequence of points
(z1,...,2) C supp(Ag,,) such that |x; — z; 11| < r for all
i€{0,1,...,l+ 1} wherex =zxpandy = z;;.

2l = M1{x € =} + ol{z &€ =} with Ay, Ao > 0 and A(dx) = 14 (S N dx) for
S a PVT or PDT or MG, are essentially r-connected for any » > 0

= Shot-noise fields and £, = A >, ; 1{|Y; — x| < p;} are in general
not essentially r-connected
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Uniqueness of infinite cluster

Theorem (Uniqueness)

Letd > 1 and A ergodic. If r = esssup(p) < oo and A is essentially r-connected,
then IP(C contains at most one unbounded connected component) = 1.

= Proof: adaptation of Burton—Keane argument and FKG inequality

= Stationary point processes: esssup(g) = oo or A = 1 = uniqueness

Meester & Roy '96: Continuum Percolation, Cambridge University Press

= Nearest neighbor graphs: Haggstrésm & Meester '96: Nearest neighbor and hard sphere models in
continuum percolation, Random Struct. Algorithms 167

= [nsertion-tolerant point processes: Holroyd & Soo '13: Insertion and deletion tolerance of point
processes, Electron. J. Probab. 18

= Levelset percolation: Broman & Meester '17: Phase transition and uniqueness of levelset percolation,
J. Stat. Phys. 167
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Critical behavior

= X = (X;);e; = Cox point process in R¢ with stationary random intensity
measure A\, where E[A([0,1]9)] = 1and A > 0

» C D C, = connected component containing the origin

s For A C
of Cox points

= Lebesgue volume; diam(A) = diameter; X (A) = number

= Critical values:
wp = inf{A > 0: P(|C,| = 00) > 0}
ap = inf{\ > 0: P(diam(C,) = oco0) > 0}
pp = inf{A > 0: P(X(C,) = 0c0) > 0}
«(s) = inf{\ > 0: E[|C,|*] = o0}, for s > 0
Ad(s) = inf{\ > 0: E[diam(C,)’] = oo}, for s > 0
An(s) = inf{A > 0: E[X(C,)*] = 00}, for s > 0
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Pathological percolation behavior for Cox point processes

= [nsufficiently connected environments:

forall s > 0, Ayp = Adp = Aup = Av(S) = Aa(s) = Au(s) = o0
= Unbounded environments: Zdx with esssup(Z) = oo
forall s > 0, Ayp = Adp = Anp = Av(S) = Aa(s) = Au(s) =0

(non-ergodic, mixed PPP)

= Attractive point ProCeSSES: Blaszczyszyn & Yogeshwaran *13: Clustering and percolation of point processes,
Electron. J. Probab.

= SINR percolation |: Dousse, Baccelli & Thiran '05: Impact of interferences on connectivity in ad hoc networks,
|IEEE Trans. Netw.

x SINR percolation [1: Dousse, Franceschetti, Macris, Meester & Thiran '06: Percolation in the signal to
interference ratio graph, J. Appl. Probab.

m Cox-SINR percolation |: Tobias *20: Signal to interference ratio percolation for Cox point processes,
Lat. Am. J. Probab. Math. Stat.

= Cox-SINR percolation [l: Tobias & J 22: SINR percolation for Cox point processes with random powers,
Adv. Appl. Probab.
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Stabilizing environments

Definition (Stabilization)
The stationary random measure A is ¢-stabilizing if there exists a random field of
stabilization radii R = { R, } .4, defined on the same probability space as A, with
1. (A, R) are jointly stationary,
2. limapoo () = 0, where p(a) = P(sup,co. nge 2y > @), and
3. for all &« > 1, the random variables

(f(Aguu)l{ suwp Ry<a}) .,

YEQa(z)N QY

are independent for all non-negative bounded measurable functions f and finite
) C RY as long as dist(z, 1 \ ) > 3a forall x € 1.

= (p-stabilization implies ergodicity
= A b-dependent if p(a) = O forall a > b
= A exponentially stabilizing if () < exp(—ca)
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Examples: stabilizing environments

= Shot-noise fields are b-dependent for compactly supported kernels; kernels with
unbounded support lead to absence of p-stabilization

» A(dz) = 1v1(S Ndx) for S a PVT or PDT, are exponentially stabilizing,
R, = min{|zx — X;|: X; € X|}

Hirsch, Cali & J ’19: Continuum percolation for Cox point processes, Stoch. Proc. Appl.

= A(dz) = 11 (S Ndx) for S a PLT or MG are not (-stabilizing
2l = A o H{|Y: — x| < p;i} with b = esssup(p) < oo are b-dependent

nly =AY H{|Y; — x| < p;} with esssup(p) = oo and E[p?™¢] < oo for
s > 0, are p-stabilizing with [~ a*1p(a)da < co
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Phase transitions for Cox—Boolean models

Theorem (Phase transitions)

Letd > 2, s > 0 and A\ be stationary.

1. A @-stabilizing with sufficiently large esssup(g) implies Ayp, Adp, Anp < 0.
2. E[0] < oo and A\ o-stabilizing implies \yp, Adp; Aup > 0.
3. E[0""*] < 00 and A -stabilizing with [, o p(a)da < co implies

Av(s/d), Aa(s) > 0. Au(s/d) > 0 if additionally
/ o 'P(A(B,) > ca’)da < oo for some ¢ > 0. (1)
0
4. E[0%"%] = 0o and A ergodic implies A\, (s/d) = Xa(s) = Au(s/d) = 0.

= Proof via multi-scale and branching-process arguments (see below)
= Overshoot-Condition (1) satisfied by canonical examples (see below)
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Related work

o () < Ay, < 00 for fixed radii
Hirsch, Cali & J ’19: Continuum percolation for Cox point processes, Stoch. Proc. Appl.

Tébias '20: Signal to interference ratio percolation for Cox point processes, Lat. Am. J. Probab. Math. Stat.

= A\yp > 0, Aqp > 0, A¢(s/d) > 0and \q(s) > 0 alternatively via

Gouére, '09: Subcritical regimes in some models of continuum percolation, Ann. Appl. Probab.

= Version for Poisson point processes
Meester & Roy '96: Continuum Percolation, Cambridge University Press
Gouéré ’08: Subcritical regimes in the Poisson Boolean model of continuum percolation, Ann. Probab.

Gouéré & Théret '18: Equivalence of some subcritical properties in continuum percolation, Bernoulli

= Percolation for Gibbs point processes with fixed radii
Murmann ’75: Equilibrium distributions of physical clusters, Comm. Math. Phys.
Stucki "13: Continuum percolation for Gibbs point processes, Electron. Commun. Probab.
Jansen '16: Continuum percolation for Gibbsian point processes with attractive interactions, Electron. J. Probab.

Magazinov '18: On percolation of two-dimensional hard disks, Comm. Math. Phys.
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Related work

= Percolation for repelling point processes in R? include Ginibre ensembles and
Gaussian zero processes with fixed radii

Ghosh, Krishnapur & Peres *16: Continuum percolation for Gaussian zeroes and Ginibre eigenvalues, Ann. Probab.

= Percolation for negatively associated point processes, including determinantal
point processes and some perturbed lattices
Georgii & Yoo ’'05:; Conditional intensity and Gibbsianness of determinantal point processes, J. Stat. Phys.

Blaszczyszyn & Yogeshwaran '13: Clustering and percolation of point processes, Electron. J. Probab.
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Criteria for Condition (1)

Lemma

Condition (1) holds if any of the following two conditions holds,

lim sup o “log E[exp(BA(B,))] < oo for some 3 > 0,

aloo

lim sup oﬁ“w*gEHA(B@) — |Ba|m < oo  forsome3 > 1ande > 0.

aloo

Applicable:

= Shot-noise field with compactly supported kernel
s A(dz) = lpdz with £, = A >, H{|Y; — 2| < pi} and E[p?"%¢] < 00
= A(dz) = v1(S N dz) with S edge set of PDT in R?
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ldeas of proof

= Part 1: Existence of supercritical percolation regimes for sufficiently-large radii
via coupling with percolating Cox—Boolean model with large fixed radii

= Part 2 & 3: Existence of subcritical percolation regimes via multi-scale argument;
main idea, let f(a) = P(0 «~ BS(0)) and
gla) = MNE[0“1{0 > a}] + 2p(10c), then there exists ¢ = ¢(d) < oo such that

f(10a) < c(f(e)® + g())

[Gouéré, '08]: limteo g(ar) = 0 implies lim,1o0 f() = 0 and
[ afg(a)da < oo implies [ of f(a)da < oo

= Part 4: Absence of subcritical percolation regimes via branching-process
arguments

16/53 Continuum Percolation in Random Environments




Percolation probabilities and Palm calculus

= Fix r > 0 and consider Cox—Gilbert graph g,.(X)
= Assume normalization E[A(Q1)] = 1 with Q,. = [—r /2,7 /2]*
= Define Palm version X ™ of X via
E[f(X)] = B[ 32 f(X - X))
X;elh
= Define percolation probability by
(A, 1) =P(o «w c0in g, (X))

= Define Palm version A* of A via

BA(V) =E[ [ Alda)f(A o)

1
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Large-radius limit of the percolation probability

= For Poisson-Gilbert graph: lim,+o, 7~%log(1 — (X, 7)) = —| B1(0)|

Penrose '91: On a continuum percolation model, Adv. Appl. Probab.
= Large-deviations rate function given by isolation probability

= Remains true for b-dependent Cox processes with A-dependent rate:

If A > 0, then
lim inf 7~%log(1 — O(\, 7)) > liminf 7~ %log E[exp(—AA*(B,(0)))].

rtoo rToo

If. additionally, \ is b-dependent and A ([0, 1]%) has all exponential moments, then
the limit

I* = —limr “%log Elexp(—=AA(Qr))]

rToo
exists and
lim r~%log(1 — O(\, 7)) = —|B1(0)|1*.

r1oo
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Large-radius limit of the percolation probability

,

(

. '//

-

‘W’:@‘ BNy

= ? ‘}(?{Y

= Global lower bound given by isolation probability

= Upper bound applicable for example for environment based on = or shot-noise
fields

= Limiting Laplace transform computable for example for shot-noise fields,
lim 7~ %log Elexp(—AA(Q,))] = As(e ™ — 1)

rtoo

where K = [ dx k(z)
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Large-intensity limit of the percolation probability

= For Poisson—Gilbert graph, due to scale invariance, large-intensity statements
can be obtained from large-radius statements

= In general not true for Cox—Gilbert graphs
= Cox case: connectivity structure of the support of A* becomes prominent
= Define r-boundary of set A C R%by 9,A = {x € R? : dist(z, A) <r}\ A

= Define ‘R, = set of all compact sets that contain the origin and are r-connected

Letr > (0. Then,

.. 1 . > _ : s .
hgr%églf)\ log(1 —0(\, 7)) > Alél}éressmf(/\ (0,A))

If, additionally, \ is b-dependent and essinf(A(Qs)) > 0 for every > 0, then
limsup A 'log(1 — O(\,r)) < —lim inf essinf(A*(9,_.A)).

Atoo el0 AER, .
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Large-intensity limit of the percolation probability

= Global lower bound not necessarily given by isolation probability

= For example for environment based on = with A1, Ay > 0, r.h.s. optimal for
A = {o}

= For PVT r.h.s. of the lower bound can be computed to be —2r

= Condition essinf(A(Q)s)) > 0 not satisfied for shot-noise field and singular
examples
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Sharp thresholds for finite-range Cox—Boolean models

= Environments with uniformly bounded dependencies and bounded intensity, e.g.,
PVT superposed with sparse grids and thickened edges or capped intensities

= Finite-volume percolation probability
On(\) = P(O o =1 /2,m /2] in gl(XA))

1. limsup, ... n tlog8,(\) < 0 holds for every A < ., and
2. lim il”lf)\i)\c (9()\)/()\ — )\c) > 0.

= Proof based on OSSS inequality and coarse-graining construction
Hirsch, Muirhead & J ’22: Sharp phase transition for Cox percolation, Elec. Comm. Probab.
Duminil-Copin, Raoufi & Tassion’19: Sharp phase transition for the random-cluster and Potts models via decision trees,
Ann. of Math.
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Beyond stabilization: Manhattan—Boolean models

= Absence of stabilization features long (infinite)-range dependencies

= Manhattan grid based on two independent homogeneous Poisson point
processes &, &V C R with intensities 11, and i

A(A) = /R /R 1{(z.y) € A¥dy &*(dz) + /R /R 1{(z.y) € Abdz &¥(dy)
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No sharp thresholds in Manhattan—Boolean models

= g.(X") Gilbert graph based on Poisson point process with intensity AA

= Accumulation of streets is probabilistically cheap, leading to subexponential
decay

Vu, Jhawar & J '22: Continuum percolation in a nonstabilizing environment, arXiv:2205.15366

Forallr > /2 and jix, ty, A > 0 we have that
lim inf| A\~ log n|! " log(uxA”Y)Gn(fr, L oy A) > 0,

n—oo

in particular, for every ¢ > (

lim inf n(lﬁ)xll‘)g(bg”)@n(r, sy flys A) = OO
n—0Q

24/53 Continuum Percolation in Random Environments




Supercritical regimes in Manhattan—Boolean models

Letr > 0 be arbitrary.

1. For every A > 0, there exists yi.(r, \) > 0, such that for all iy, fry > pie(r, A):
C(r, pix, ty, \) percolates almost surely.

2. For every iy, [ty > 0, there exists \.(, jix, ity) > 0, such that for all
A > N7, g, p1y): C (7, fix, fy, X) percolates almost surely.

3. Forevery \, pix > 0, there exists fiy (T, tix, A) > 0, such that for all
oy > fhy (T py A):2C(7, g, Ly, \) percolates almost surely.

= Proof by comparison to supercritical bond percolation in randomly stretched
lattice

Hoffman '05: Phase transition in dependent percolation, Comm. Math. Phys.
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Randomly stretched lattice (RSL)

s NW = (NZ.( ))ZEZ and N = (V; N )jez = families of mutually independent
positive random variables and pE ( 1)
(@)

P((i,5) > (1 4+ 1,7) is open| N@ NW )) = pPi
TS @---OnmmmOmmmeOrmmn (O o -------- o ------ oo ‘ ________ i . _____
)2
W S — @O OO0 F S S S SR S
Y S — h
S S S S
NS D S |2
; R — Y SRR @------- ®-3---
}2
Y SEETORES @---Ommmmmmpmnn Omee Y SR ®- ¢_ ______ P PO ¢ _____

« Hoffman: If (N > 1), P ]( W) > 1) < 2710000 then there exists p. € (0, 1)
such that RSL percolates almost surely for all p > p..
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Subcritical regimes in Manhattan—Boolean models

Theorem

For every r > ( and every [ix, &y > 0, there exists a A.(r, fix, fty) > 0 such that
forall A\ < (7, pix, fty): C(7, fix, fby, X) does not percolate almost surely.

= Proof significantly more tedious via Peierls’ argument and existence of closed
circuits in dual of subcritical RSL

= Discretization of streets into merging bands and labels mimicking and extending
the strategy of Hoffman

‘ 3 I 3 3
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Setting: Device locations

= Devices at time zero: Stationary Cox point process XA = (X;)ier on random
segment processes .S with intensity measure Ag(dx) = A|.S N dx|, where
A > 0and E[Ag([0,1]%)] = 1

Figure: Realization of a Cox—Boolean model (blue) based on a Cox point process (red) with directing measure given by a
realization of a Poisson—\Voronoi tessellation (black).
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Stabilizing environments

Definition (Stabilization)

A stationary random segment process .S is called stabilizing if there exists a
random field of stabilization radii R = { R, } ,cg?, defined on the same probability
space as S, with
1. (S, R) are jointly stationary,
2. limp g0 P(sup,eg ng2 2y < n) = 1 and
3. for all n > 1, the random variables
f(S0,){ sup R, <n}
( " JEQu@N@ )xew

are independent for all non-negative bounded measurable functions [ and finite
) C R?, as long as dist(x, 1) \ ) > 3n forall x € 1.

= stabilization implies ergodicity
= S b-dependent if P(sup,c nq2 2y, > n) = Oforalln > b
= S exponentially stabilizing if P(sup,cg, g2 Ity = n) < Cexp(—cn)

29/53 Continuum Percolation in Random Environments




Asymptotic essential connected environments

= Ag for S'a PVT or PDT are exponentially stabilizing, R, = min{|z — X;|: X}

Hirsch, Cali & J 19: Continuum percolation for Cox point processes, Stochastic Processes and Applications

s \g for S a PLT or MG are not stabilizing
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Asymptotic essential connected environments

= Ag for S'a PVT or PDT are exponentially stabilizing, R, = min{|z — X;|: X}

Hirsch, Cali & J 19: Continuum percolation for Cox point processes, Stochastic Processes and Applications

s \g for S a PLT or MG are not stabilizing

Definition (Asymptotic essential connectedness)

A stabilizing random segment process S with stabilization radii R is asymptotically
essentially connected if, for all sufficiently large n > 1, whenever
SUP,c,,n 02 Ity < n/2, we have that

1.1SN @, > 0and
2.5 N Q, is contained in one of the connected components of S N (y,,.

s Ag for S a PVT or PDT are asymptotically essentially connected
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Mobility in urban device-to-device networks

= Waypoint kernel: device X picks target location Y; independently via stationary
kernel

55 (X, dy)
= Example: x°(x, dy) = |S N Br(z)| t|dy N S N Br(x)|
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Mobility

= Movement: device X; moves to Y; and back with iid velocity V; (governed by (i,
with supp(ftv) = |Vmin, Umax] C (0, 00)) to waypoint via shortest path on .S

G
!'Angb\a
h‘.ﬂB "
eaP

IS
NS
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Part 1. Connectivity in mobile device-to-device networks

= Contact times: device X; and X; with trajectories (7} ;)¢>0 and (7 +)¢>0 have
contact at times

Z(Xi, X;)={0<t<T:|1;; —Tj;| <randTjT;, are on same street}
= Connection: device X; and X; are connected if for some ¢t > 0,
[t, t+ ,0] C Z(XZ, X]>

where p = p, + p1 with initialization time p, > 0 and transmission time p; > 0

Analysis of clustering behavior of graph

A
IT g (X7)
with respect to system parameters.
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lllustration of connectivity graph g7 ,,. . (X?)
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Figure: Realization of gT)NV),,,T(XA) with 1" = 0. The street system is suppressed.
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lllustration of connectivity graph g7 ,,. . (X?)
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Figure: Realization of g1, ,(X*) with I" = 1. The street system is suppressed.
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lllustration of connectivity graph g7 ,,. . (X?)
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Figure: Realization of g1, ,(X*) with T" = 2. The street system is suppressed.
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lllustration of connectivity graph g7 ,,. . (X?)
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Figure: Realization of gT)NV),,,T(XA) with 1" = 3. The street system is suppressed.
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lllustration of connectivity graph g7 ,,. . (X?)
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Figure: Realization of g1, ,(X*) with T" = 4. The street system is suppressed.
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lllustration of connectivity graph g7 ,,. . (X?)
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Figure: Realization of g7 ., ,.-(X*) with T" = 5. The street system is suppressed
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Critical parameters for percolation

= Define critical parameters for percolation:

T. =Tu(\, fiy, p,7) = inf{T > 0: P(gr,, ,.(X") percolates) > 0}
=T, oy, p,7) := inf{\ > 0: P(gr . ,-(X*) percolates) > 0}
:pC(T, A, fhy, ) i=sup{p > 0: P(gr, ,-(X") percolates) > 0}
=r(T, A, by, p) i= inf{r > 0: P(gz,,. ,-(X") percolates) > 0}

=ve(T, A, p, 1) = inf{avyax > 0: P(gr 0, (X") percolates) > 0}
=v°(T, A, p, ) := sup{avmi, > 0: P(g7 0 ,-(X") percolates) > 0}
) =

with ,uv(dfv ty(dv/a)
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Critical parameters for percolation

= Define critical parameters for percolation:

T. =Tu(\, fiy, p,7) = inf{T > 0: P(gr,, ,.(X") percolates) > 0}
=T, oy, p,7) := inf{\ > 0: P(gr . ,-(X*) percolates) > 0}
:pC(T, A, fhy, ) i=sup{p > 0: P(gr, ,-(X") percolates) > 0}
=r(T, A, by, p) i= inf{r > 0: P(gz,,. ,-(X") percolates) > 0}

=ve(T, A, p, 1) = inf{avyax > 0: P(gr 0, (X") percolates) > 0}
v =v(T, A, p, 1) == sup{avym > 0: P(gr,a,,(X") percolates) > 0}

with p?(dv) == py(dv/a)
= Partial monotonicities:

T — P(g7,, ,-(X") percolates) increasing
- A = P(g7.4,. .- (X?) percolates) increasing

)\

-7+ P(g7.,. ,.(X?) percolates) increasing
- p— P(gr,. ,.(X*) percolates) decreasing
( (X7 )

- a + P(gr e ,,(X*) percolates) non monotone
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Absence of percolation |

Theorem (1, Ac, v, > 0)

For any k and all v, p > 0 the following holds:

(1) For all A > 0 and j, we have that T.(\, iy, p, ) > 2p,
(2) forall'T" > 0 and i, we have that \.(T', i, p,r) > 0 and
(3) forall T, A\ > 0 we have thatv.(T, \, p,r) > 0.

= |[deas for the proof: Comparison to Cox—Boolean models and discretization
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Absence of percolation |

Theorem (1, Ac, v, > 0)

For any k and all v, p > 0 the following holds:

(1) For all A > 0 and j, we have that T.(\, iy, p, ) > 2p,
(2) forall'T" > 0 and i, we have that \.(T', i, p,r) > 0 and
(3) forall T, A\ > 0 we have thatv.(T, \, p,r) > 0.

= |[deas for the proof: Comparison to Cox—Boolean models and discretization

Theorem (v. < Q)

Let S be a Poisson—Voronoi or Poisson—-Delaunay tessellation. For any k with
bounded support and all T, A\, > 0 and all p > 0 we have that
V(T A, p, 1) < 0.

= [deas for the proof: Multiscale argument for geostatistical markings
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Absence of percolation |

Take-home message

In-and-out of percolation forv — gr.s, ,.(X*).

Proportion of nodes

1001 in biggest clus

80 1
60 1
40 -
20 1
0

Velocity
1 2 3 4 5 6 7 & 9 10 inkm/s
Figure: In-and-out of percolation: Simulation of the largest connected cluster at different times 1" = 3min (black),
T = 4.5min (blue), and T' = 6min (red). Furthermore, we used p = 10sec, r = 20m, A\ = 20devices/km and a street

intensity of 20km /km?. For the velocities we chose a normal distribution, conditioned to be positive i, = N (v, v/5).
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Absence of percolation |l

Theorem (r = 0: p. = 0)

For any k, i1 and all T', v, A > 0 we have that p.(T', \, 11y, 0) = 0.

Theorem (r > 0: p. < p.(T, uy))

For any K, jty and T, N, > 0: po(T) A, poy, 1) < pL(T, i) AT /2.

Here pl.(T,d,) = sup{p > 0: P(S**(T=20) percolates) > 0}, with S** given by
edges ¢ C S with |[¢| > a and edges between endpoints of ¢ at distance < b.

Figure: Realization of Sv?*(T—2¢) pased on S.
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Thinned street systems

= Consider a, := limy,o a.(b) where

ac(b) = sup{a > 0: P(S*’ percolates) > 0}

We have that a. < oco. Further, for any k and'T’ > 0 as well as v > 4a./T it holds
that p/.(T', 0,,) < T/2.

= Proof via stabilization arguments
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Existence of percolation

= 1 is c-well behaved if for almost-all S and all z € S
Be(x) NS C supp(k”(z,dy))

k is well behaved if k is c-well behaved for some ¢ > (

Theorem (p = 0: A < 00)
For k. well behaved and T' > 0 then A\(T, jt, 0,7) < 00.

Theorem (p > 0: Ao < 00)

We have that 0 < a.(0). Let k be c-well behaved for some ¢ > 0,7, p > 0 and
T' > 2p. Then, for all sufficiently small vy, we have (T, iy, p, ) < 00.

= Proof via coupling to system of good and bad streets and stabilization arguments
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Part 2: Chase escape in mobile device-to-device networks

= Contact times: device X; and X; with trajectories (7} ;)¢>0 and (7 +)¢>0 have
contact at times

Z(Xi, X;)={0<t<T:|1;; —Tj;| <randTjT;, are on same street}

= Generalized connections: device JX; and Xj- are connected if for some ¢t > 0,
t—p(Xi, X;),t] C Z(X;, X)
with p(X;, X;) iid infection time with distribution g
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Finite degrees

= Shortest-path lengths: (g(z) = sup{|¢s(z,y)|: v € supp(k®(z,dy))} +r/2
where {s(x, y) shortest path between x and y on .S

] Degree: deg(XZ) = #{X] c X)\ \ X@ ’Xz — X]‘ < €S<Xz) + £S<X])}
= Local connectedness assumption: P(3X; € X* such that deg(X;) = co) =0

Proposition (Local connectedness)

If k has bounded support, S is exponentially stabilizing and |S N Q1| has
exponential moments, then the network is locally connected.

= Proof via first-moment method for typical device
= Satisfied for standard examples PVT and PDT
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Devices and white knights

= Initial infected device: X, typical device at origin under Palm measure
= [nitial susceptible devices: Cox process X*on S

= Initial white knights: Cox process Y on S

= Infection time distribution: g and patching time distribution: o

= Minimal times: o1 min = inf{x > 0: x € supp(or)}, analogously for ow min

m [ransmission mechanism:

- Infection: Infected .X; transmits to susceptible X ; after completion of
/01<Xi7 Xj)

- Patching: White knight JX; transmits to infected X ; after completion of
IOW<Xi7 Xj)

= Process of susceptible and infected devices and white knights: (.S;, I, Wy)¢>g
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Simulations

Figure: Propagation of infected devices (red) on a street system given by a Poisson—Voronoi tessellation. In the initial state
(left) there is exactly one infected device present in the center and the remaining devices are either susceptible (blue) or white
knights (green). At some small positive time (middle) further devices in the vicinity of the initially infected device have become
infected and have started to make contact to white knights. At some later time (right) infected devices are only present along

the boundary of the set of white knights in the center region.
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Global survival

= Waypoint continuity:  is ¢-continuous if inf,¢ () 5° (2, y) > 0 where k°(z, y)
Lebesgue density defined for almost-all S and x € S

= Street connectedness: 5% = {s € S |s| > a} and R? distance to furthest
point from x reachable without crossing S“. Call graph R“-connected if

imP( sup R}<n)=1
nToo 2€0Q,NQ2

Let a. := sup{a > 0: S%is R"-connected}
= Global survival: | | J,> I;| = o0

Theorem (Global survival)

Let k be c-continuous for some ¢ > 0 and ow min > Ormin > 0. Then, for all

sufficiently small vy, such that 0 < Unin01min < min(ac/2,r, c/2), there exists
Ae > 0 such that for all A > A\, and all A\yy > 0,

IP(infection survives globally) > 0.
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Extinction

= Punchline: If ow min > 01min > 0, then survival guaranteed for all Ay > 0

= Proof idea: Existence of infinite cluster of good streets on which infected wins
against patching
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Extinction

= Punchline: If ow min > 01min > 0, then survival guaranteed for all Ay > 0

= Proof idea: Existence of infinite cluster of good streets on which infected wins
against patching

Theorem (Extinction)

Let S be a Poisson—\Voronoi or Poisson—Delaunay tessellation. Let x be well
behaved with bounded support and assume that r > Unax OW min @nd

OLmin > OW.min > 0. Then, for all A > 0, there exists Ay . > 0 such that for all
Aw > Aw . we have that

IP(infection survives globally) = 0.

= Proof idea: Multiscale argument
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Speed-dependent survival and extinction

Theorem (Speed-dependent survival and extinction)

Let S be a Poisson—Voronoi or Poisson—-Delaunay tessellation. Let x have bounded
support and be c-well behaved for some ¢ > 0. Assume further that pw = 5pw and
o1 = 9, with pw > p1, and let0 < v, < min(a./2,r,c/2)/p1. Then, there exists
Ae > 0 and A\w . > 0 (independent of \. and v,,), such that for all A\ > \. and all
Aw > Aw . we have that

(1) there exists v, > v.(A, Aw) > 0 such that for all j1, = 0, withv < v.(A, Aw)
we have
[P(infection survives globally) = 0,

(2) for u, = 6, we have IP(infection survives globally) > 0, and

(3) there exists oo > v° > v, (independent of A and A\ ), such that for all |1, = 9,
with v > v° we have

[P(infection survives globally) = 0.

52/53 Continuum Percolation in Random Environments




Thank you for your attention

[ATT16] D. AHLBERG, V. TASSION, and A. TEIXEIRA, Sharpness of the phase transition for continuum percolation
in R?, Probab. Theory Relat. Fields 172:1-2, 525-581 (2018).

[GO08] J.-B. GOUERE, Subcritical regimes in the Poisson Boolean model of continuum percolation, Ann. Probab.
36, 1209—-1220 (2008).

[HJC19] C. HIRSCH, B. JAHNEL, and E. CALI, Continuum percolation for Cox point processes, Stochastic
Process. Appl. 129:10, 3941-3966 (2019).

[HJR22] S. HERNANDEZ-TORRES, M. JUNGE and N. RAY, Distance-dependent chase-escape on trees, arXiv
preprint arXiv:2209.09876 (2022).

[BCEHJ21] E. BECKMAN, K. CooK, N. EIKMEIER, S. HERNANDEZ-TORRES and M. JUNGE, Chase-escape with death
on trees, Ann. Probab., 49:5, 2530-2547 (2021).

[DJT18] R. DURRETT, M. JUNGE and S. TANG, Coexistence in chase-escape arXiv preprint arXiv:1807.05594,
(2018).

[BHJR22] E. BERNSTEIN, C. HAMBLEN, M. JUNGE, and L. REEVES, Chase-escape on the configuration model
Elec. Com. Probab., 27, 1-14 (2022).

[HJCW20] A. HINSEN, B. JAHNEL, E. CALI, and J.-P. WARY, Phase transitions for chase-escape models on
Poisson—Gilbert graphs Elec. Com. Probab., 25, 1—14 (2020).

[JTC22] B. JAHNEL, A. TOBIAS and E. CALI, Phase transitions for the Boolean model of continuum percolation for
Cox point processes Braz. Journ. Probab. Stat., 36:1, 20—44 (2022).

[LP17] G. LAST and M. PENROSE, Lectures on the Poisson Process, Cambridge University Press (2017).

[MR96] R. MEESTER and R. Roy, Continuum Percolation, Cambridge University Press (1996).

53/53 Continuum Percolation in Random Environments \




