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Spreading processes on spaƟal networks
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ProperƟes of real spaƟal contact networks
Most large real networks are staƟsƟcally very similar. If you understand one,
you understand others.

• Scale-free degree distribuƟons: node degree distribuƟon has fat tail
(e.g. 10% of nodes might have 90% of connecƟons)

• Geometry: nodes have a fixed (or almost fixed) locaƟon in space

• Clustering, Local communiƟes: nodes form strongly connected groups
based on geographical locaƟons (e.g. ciƟes).

• Long-range connecƟons: long distance connecƟons are relaƟvely
common (e.g. airplanes, interconƟnental fiberopƟc cables)

• Small world phenomenon: All nodes can be reached via a few hops
through the network (e.g. six degrees of separaƟon)

• Hierarchical: most nodes are connected to at least one node with
more connecƟons than they have themselves

[Adapted from Network Science (2015) by Albert László Barabási]
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History of spreading models
• 1750’s – now: DifferenƟal equaƟons: versaƟle but only complex
models can include geometry / individuals

• 1850’s – now: Branching models: simple models with rich behaviour,
but no networks effects

• 1950’s – now: Laƫce models: simple models, but no scale-freeness,
long-range, small world, hierarchy

• 1960’s – now: Random graphs: simple models, but no geometry,
clustering

• 2010’s – now: Hyperbolic random graphs and spaƟal scale-free
network models: simple models, all desired properƟes
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SpaƟal Scale-free Network Models
Ingredient 1: point process for the locaƟon of nodes
a
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SpaƟal Scale-free Network Models
Ingredient 2: i.i.d. fitnesses for nodes, e.g. fat tailed, P(W > x) ≍ x1−τ
a

5 / 34



SpaƟal Scale-free Network Models
Ingredient 3: random connecƟons between nodes
probability increasing with fitness and decaying with distance.
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SpaƟal, clustered, long-range models

Hyperbolic geometric graphs (by Krioukov et al. ‘10)

Figure: Hyperbolic random graph simulaƟons by Tobias Mülller
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SpaƟal, clustered, long-range models

Figure: Scale-free percolaƟon, by Joost Jorritsma
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SpaƟal, clustered, long-range models

Geometric inhomogeneous random graphs

Figure: GIRG simulaƟon by Joost Jorritsma
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Infinite Geometric Inhomogeneous Random Graphs:
IGIRG

• d = dimension

• VerƟces: a homogeneous Poisson Point Process V on Rd

• Vertex-fitnesses: iid fitness Wv to each vertex v ∈ V
• Edges: Connect u, v ∈ V condiƟonally independently w/p

P(u↔ v∣Wu,Wv) ∶= h(u, v,Wu,Wv),

where h ∶ Rd ×Rd ×R ×R→ [0,1]measurable.
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Infinite Geometric Inhomogeneous random graphs 2.
Choice of parameters:

• Fitnesses: Wv power law with exponent τ > 1:

P(W ≥ x) ≍ 1/xτ−1

(slowly varying correcƟon term is allowed)

• Edges: ConnecƟon probability saƟsfies

h(u, v,Wu,Wv) = Θ(min{1, ( WuWv
∥u−v∥d )

α

}),

• Threshold GIRG: ConnecƟon probability saƟsfies

h(u, v,Wu,Wv) = 1{∥u − v∥d ≤ Θ(WuWv)}.

History of the models:
vertex set Zd: Scale-free percolaƟon; Deijfen, v/d Hofstad, Hooghiemstra ‘13;
vertex set PPP on Rd: Deprez, Hazra, WüƩrich, ‘15
threshold h: Hyperbolic random graphs, Krioukov, et al
n verƟces in [0, 1]d: Bringmann, Keusch, Lengler ‘15

general connecƟon prob: Lodewijks & K ‘19+
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Some properƟes of GIRGs/ IGIRGs

Theorem (BKL‘17, BKL‘16)
Let α > 1. Fitness distribuƟon W power law with τ > 2⇒
degree distribuƟon power law with τ > 2.

Theorem (DHH’13)
If α ≤ 1 or τ < 2, each vertex has infinite degree.

Theorem (BhaƩacharjee, Schulte ‘19)
The Hill’s esƟmator is consistent for these models.

11 / 34



Some properƟes of GIRGs/ IGIRGs

Theorem (DHH’13, BKL‘17, KLL‘19+)
Let α > 1, τ ∈ (2,3). Then there is a unique infinite component.
For τ > 3, there is a unique infinite component above a threshold
edge-density.
For finite versions, there is a unique linear sized giant-component.

Average distance within a Volume N box:

Dist(N) = 1

(N2)
∑
u,v

dG(u, v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Θ(log logN) when τ ∈ (2,3), α > 1
Θ((logN)ζ) when τ > 3, α ∈ (1,2)
Θ(
√
N) when τ > 3, α > 2,
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Spreading processes on networks

SuscepƟble-Infected model:

• At Ɵme t = 0 the source node is infected, all other
nodes suscepƟble.

• if, on an edge {u, v}, u is infected and v is not,
then v becomes infected aŌer a random
transmission delay L(u,v).

The epidemic curve
The funcƟon that counts the total number of infected
nodes before Ɵme t:

I(t) =#{ infected nodes before Ɵme t}

13 / 34



The shape of the epidemic curve

QuesƟon
What does the epidemic curve look like for spreading on real networks?

Is it typically. . .

• Linear?

• Or polynomial?

• Or exponenƟal?

• Or super-exponenƟal?

Answer

Yes.

QualitaƟvely. QuanƟfying these staƟsƟcally is very difficult.
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Epidemic curves in real life

Figure: Covid-19 epidemic curves: US (leŌ), Iran (right). Source: Johns Hopkins
University Corona Dashboard
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Epidemic curves in real life

Figure: Covid-19 epidemic curves: Colombia (leŌ), Chile (right). Source: Johns
Hopkins University Corona Dashboard
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The epidemic curve on SSNMs
XXXXXXXXXXDistance

Fitnesses
fat-tailed

τ ∈ (2,3)

light-tailed

τ > 3

weak decay

α ∈ [1,2)
doubly-exponenƟal
or explosive

(stretched) exponenƟal

strong decay

α ∈ [2,∞]
doubly-exponenƟal
or explosive

linear/polynomial
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What is explosion?

On infinite networks
A spreading process is explosive on an infinite
network if I(t) =∞ for some t <∞.

On very large but finite networks
A posiƟve fracƟon of the nodes is infected
within constant Ɵme, no maƩer how large
the network is.

• 1970s: Grey, Harris, Sevastanov: explosion
in Branching processes

• 2010s: Amini, Devroye, Griffith, Olver:
explosion in Branching random walks

• 2017+: Me: explosion on networks
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Explosion on scale-free spaƟal networks
Recall: infecƟon uses i.i.d. transmission Ɵmes Lu,v on edges.

Theorem (Komjáthy, Lodewijks, SPA, 2020)
Explosion happens for SI on spaƟal scale-free network models when:

• τ ∈ (1,2]: (but trivially and not realisƟc), or

• τ ∈ (2,3), if and only if

∞
∑
k=1

F(−1)L (1/ee
k

) <∞,

where FL is the cumulaƟve distribuƟon funcƟon of delays L.

• τ > 3 explosion never happens.

Moreover, if we have explosion, we can characterise the epidemic curve.

Finite model: IN(t)
N

dÐ→f(t − E1), where f(t) = P(E2 < t), and E1 is a random
shiŌ.

Comment: Explosion insensiƟve to τ , as long as τ ∈ (2,3). All polynomial
FL’s are explosive.
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• τ ∈ (2,3), if and only if

∞
∑
k=1

F(−1)L (1/ee
k

) <∞,

where FL is the cumulaƟve distribuƟon funcƟon of delays L.

• τ > 3 explosion never happens.

Moreover, if we have explosion, we can characterise the epidemic curve.

Finite model: IN(t)
N

dÐ→f(t − E1), where f(t) = P(E2 < t), and E1 is a random
shiŌ.

Comment: Explosion insensiƟve to τ , as long as τ ∈ (2,3). All polynomial
FL’s are explosive.
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Degree-dependent SuscepƟble-Infected models

ObservaƟon
Disease spreading, real-world communicaƟon: Large-degree nodes have a
limited “Ɵme-budget” to meet and infect.
Miritello et. al. ‘13, Feldman Janssen ‘17, Giuraniuc et al. ‘16, Karsai et. al. ‘11

Model: Degree-penalised transmission delays

• Transmission delay through an edge:

T(u,v) = L(u,v) ⋅ f(deg(u),deg(v), ∥u − v∥)

• Random component: i.i.d. random variables L(u,v) ≥ 0
• Budget factor: f(deg(u),deg(v), ∥u − v∥) depends on the degrees and
spaƟal distance
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Result: Explosion with degree-penalƟes
Is explosion sƟll possible with penalty factors?

Theorem ( Komjáthy, Lapinskas, Lengler (2020+))

• Yes, when τ < 3, and
• f = poly(deg(u),deg(v)) is a polynomial: Explosive if and only if for

some β < βc = (3 − τ)/deg(poly),

FL(t) ≥ tβ on [0, t0].

Otherwise, the model is not explosive.
Explosion with penalƟes requires a steep polynomial increase of L at 0.
Compare: without penalty factor, much easier, many sub-polynomials are
explosive.
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The epidemic curve on SSNMs
XXXXXXXXXXDistance

Fitnesses
fat-tailed

τ ∈ (2,3)

light-tailed

τ > 3

weak decay

α ∈ [1,2)
doubly-exponenƟal
or explosive

(stretched) exponenƟal

strong decay

α ∈ [2,∞]
doubly-exponenƟal
or explosive

linear/polynomial
(grid-like)
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Current and future work

The epidemic curve with degree penalƟes
````````````Penalty &Decay

Fitnesses
fat-tailed τ ∈ (2,3)

small

deg(f) < (3 − τ)/β

doubly exponenƟal
or explosive

medium

deg(f) < 2(3 − τ)/β
or α ∈ (1,2)

stretched exponenƟal

high

deg(f) < 2
d + 2(3 − τ)/β ∨ 2

α−τ+1
d(α−2)

and α > 2

polynomial (faster than
grid-like)

very high

deg(f) > 2
d + 2(3 − τ)/β ∨ 2

α−τ+1
d(α−2)

and α > 2

linear
(grid-like)
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Proof ideas

24 / 34



Proof of explosion when deg f < (3 − τ)/β
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ConstrucƟon of a greedy path with finite total length

n 1

c(i
) 3

c(i
) 4

(i)
5

c(i
) 6

Γ 0
Γ 1

Γ 2

3

4

5

6
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ConstrucƟon of a greedy path with finite total length

leaders

sub-boxes

(cover at least 1/2 of volume)

(k + 1)-st annulus

some sub-boxes are bad
(leader has wrong weight),

but not many: F
(1)
k every good leader is con-

nected to many good leaders

on next level: F
(2)
k

cheapest edge to good leader
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ConstrucƟon of a greedy path with finite total length

• LetM,A,B > 1, Annulus(k)k≥1 be consecuƟve annuli of volume

Volk ∶=MABk

• Tile each annulus with disjoint subboxes of volume volk ∶=MBk

#{subboxes in Annulus(k)} ≥ cM(A−1)B
k

• ‘Leader’ of a subbox ∶=maximal weight vertex inside it

Wleader(k) = cMBk 1±δ
τ−1

• #{leader neighbors in Annulus(k + 1) of a leader(k)}

LeaderDeg(k) = cM(A−1)B
k+1(1−ε)

with summable error probability as long as 1−δ
τ−1(1 + B) ≥ AB.
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ConstrucƟon of a greedy path with finite total length

Greedy path

• Assume 0 ∈ C∞ of IGIRG

• From 0, follow a path to leader(0) (its length is some finite random
variable X(µ, L))

• Take the edge with minimal L between leader(0) and its leader(1)
neighbors.

• conƟnue with this rule
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Cost of the greedy path

Cost of πgreedy ≤ Cost to go to leader of Annulus(0)

+
∞
∑
k=0

Wµ
leader(k)W

µ
leader(k+1) ⋅ min

j≤LeaderDeg(k)
Lkj

Wleader(k) = cMBk 1±δ
τ−1

LeaderDeg(k) = cM(A−1)B
k+1(1−ε),

min
j≤LeaderDeg(k)

Lkj ≤ F(−1)L (ξ(k)/LeaderDeg(k))

F(−1)L (Z) ≤ Z1/β

Plug everything in, we need that the sum is finite:

∞
∑
k=0

MBk(µ(1+B) 1+δ
τ−1−(A−1)B(1−ε)/β) <∞
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Cost of the greedy path

Greedy path has to exist and have finite cost when:

∞
∑
k=0

MBk(µ(1+B) 1+δ
τ−1−(A−1)B(1−ε)/β) <∞

Path is present:
1−δ
τ−1(1 + B) ≥ AB

Finite-cost:
µ(1 + B) 1+δ

τ−1 − (A − 1)B(1 − ε)/β < 0

This system of inequaliƟes have a soluƟon for A,B > 1 and ε, δ > 0 if
τ ∈ (1,3) and

2µβ < 3 − τ .

Greedy path has finite cost.
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Non-explosive regimes

Weighted model point-of-view

• In SI-model, an edge is used precisely once.

• Pre-sample all transmission delays (Ce)e∈E before the spread starts.

• InfecƟon Ɵme dC(u, v) becomes: weighted distance wrt to the metric:

InfecƟon Ɵme = weighted distance

dC(v,u) = min
π∶ path v→u

(∑
e∈π

Ce)
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Non-explosive regimes

Non-explosion when deg f > (3 − τ)/2β
Tricky (truncated) path counƟng methods.

Stretched exponenƟal and polynomial growth
See jamboard.

• Upper bounds: ConstrucƟng bridges (ala Kleinberg or ala Biskup)

• Lower bounds: Robust renormalisaƟon techniques (ala Berger)
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Thank you for the aƩenƟon!

Figure: Six instances of an infecƟon spreading on a two-dimensional SSNM with different
parameters τ and α.
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