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Properties of real spatial contact networks

Most large real networks are statistically very similar. If you understand one,
you understand others.

[Adapted from Network Science (2015) by Albert Laszl6 Barabdsi]
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Most large real networks are statistically very similar. If you understand one,
you understand others.

¢ Scale-free degree distributions: node degree distribution has fat tail
(e.g. 10% of nodes might have 90% of connections)

e Geometry: nodes have a fixed (or almost fixed) location in space

¢ Clustering, Local communities: nodes form strongly connected groups
based on geographical locations (e.g. cities).

* Long-range connections: long distance connections are relatively
common (e.g. airplanes, intercontinental fiberoptic cables)

* Small world phenomenon: All nodes can be reached via a few hops
through the network (e.g. six degrees of separation)

¢ Hierarchical: most nodes are connected to at least one node with
more connections than they have themselves

[Adapted from Network Science (2015) by Albert Laszl6 Barabdsi]
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History of spreading models

e 1750’s — now: Differential equations: versatile but only complex
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History of spreading models

1750’s — now: Differential equations: versatile but only complex
models can include geometry / individuals

1850’s —now: Branching models: simple models with rich behaviour,
but no networks effects

1950’s — now: Lattice models: simple models, but no scale-freeness,
long-range, small world, hierarchy

1960’s — now: Random graphs: simple models, but no geometry,
clustering

2010’s — now: Hyperbolic random graphs and spatial scale-free
network models: simple models, all desired properties
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Spatial Scale-free Network Models

Ingredient 1: point process for the location of nodes
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Spatial Scale-free Network Models

Ingredient 2: i.i.d. fitnesses for nodes, e.g. fat tailed, P(W > x) x x*™7
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Spatial Scale-free Network Models

Ingredient 3: random connections between nodes
probability increasing with fitness and decaying with distance.
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Spatial, clustered, long-range models

Hyperbolic geometric graphs (by Krioukov et al. “10)

Figure: Hyperbolic random graph simulations by Tobias Miilller
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Spatial, clustered, long-range models

Figure: Scale-free percolation, by Joost Jorritsma
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Spatial, clustered, long-range models

Geometric inhomogeneous random graphs

Figure: GIRG simulation by Joost Jorritsma
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Infinite Geometric Inhomogeneous Random Graphs:
IGIRG

* d =dimension

* Vertices: a homogeneous Poisson Point Process V on R?
e Vertex-fitnesses: iid fitness W, to each vertex v e V

e Edges: Connect u, v € V conditionally independently w/p

P(u < viW,, W,) = h(u,v, W,, W,),

where h: R? x RY x R x R — [0, 1] measurable.
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Infinite Geometric Inhomogeneous random graphs 2.

Choice of parameters:
e Fitnesses: W, power law with exponent 7 > 1:

P(W>x)x1/x!

(slowly varying correction term is allowed)
e Edges: Connection probability satisfies

h(u7 v,W,, Wv) = @( min {17 (—‘mmg)a}),
¢ Threshold GIRG: Connection probability satisfies
h(u,v, Wy, W,)) = 1{|u - v|? < ©(W,W,)}.

History of the models:

vertex set Z9: Scale-free percolation; Deijfen, v/d Hofstad, Hooghiemstra ‘13;
vertex set PPP on RY: Deprez, Hazra, Wiittrich, ‘15

threshold h: Hyperbolic random graphs, Krioukov, et al

n vertices in [0,1]%: Bringmann, Keusch, Lengler ‘15

general connection prob: Lodewijks & K 19+
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Some properties of GIRGs/ IGIRGs

Theorem (BKL'17, BKL'16)

Let a > 1. Fitness distribution W power law with 7 > 2 =
degree distribution power law with T > 2.

Theorem (DHH’13)
If « < 1orT <2, each vertex has infinite degree.

Theorem (Bhattacharjee, Schulte ‘19)
The Hill’s estimator is consistent for these models.
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Some properties of GIRGs/ IGIRGs

Theorem (DHH’13, BKL'17, KLL19+)

Let > 1,7 € (2,3). Then there is a unique infinite component.

For T > 3, there is a unique infinite component above a threshold
edge-density.

For finite versions, there is a unique linear sized giant-component.
Average distance within a Volume N box:

O©(loglogN) whenTe (2,3),a>1
Dist(N) = (—N)ng(u,v) =10((logN)¢) whent>3,c0€(1,2)
2/ 0y O(VN) when T >3,a> 2,
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Spreading processes on networks

Susceptible-Infected model:

e Attime t = 0 the source node is infected, all other
nodes susceptible.

* if, on an edge {u, v}, uis infected and v is not,
then v becomes infected after a random
transmission delay L, ).

The epidemic curve

The function that counts the total number of infected
nodes before time t:

I(t) = #{ infected nodes before time t}




The shape of the epidemic curve

Question
What does the epidemic curve look like for spreading on real networks?

Is it typically. ..
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The shape of the epidemic curve

Question
What does the epidemic curve look like for spreading on real networks?

Is it typically. ..
e Linear?
e Or polynomial?
¢ Or exponential?

¢ Or super-exponential?
Answer

Yes.
Qualitatively. Quantifying these statistically is very difficult.
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Epidemic curves in real life
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Figure: Covid-19 epidemic curves: US (left), Iran (right). Source: Johns Hopkins
University Corona Dashboard
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Figure: Covid-19 epidemic curves: Colombia (left), Chile (right). Source: Johns
Hopkins University Corona Dashboard
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The epidemic curve on SSNMs

Fitnesses
Distance fat-tailed 7 € (2,3) |light-tailed 7 > 3
weak decay doubly-exponential |(stretched) exponential
a€f1,2) or explosive
strong decay doubly-exponential |linear/polynomial
a€[2,00] or explosive
M
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What is explosion?

On infinite networks
A spreading process is explosive on an infinite
network if /(t) = oo for some t < co.

On very large but finite networks

A positive fraction of the nodes is infected
within constant time, no matter how large
the network is.

e 1970s: Grey, Harris, Sevastanov: explosion
in Branching processes

e 2010s: Amini, Devroye, Griffith, Olver:
explosion in Branching random walks

e 2017+: Me: explosion on networks
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Explosion on scale-free spatial networks
Recall: infection uses i.i.d. transmission times L, , on edges.
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Explosion on scale-free spatial networks
Recall: infection uses i.i.d. transmission times L, , on edges.
Theorem (Komjathy, Lodewijks, SPA, 2020)

Explosion happens for Sl on spatial scale-free network models when:

e 7€ (1,2]: (but trivially and not realistic), or
e 7€(2,3),ifand only if

gFfl)(l/eek) < o0,

where F, is the cumulative distribution function of delays L.
e 7 > 3 explosion never happens.
Moreover, if we have explosion, we can characterise the epidemic curve.
Finite model: %Lj(t — E1), where f(t) = P(E, < t), and E; is a random
shift.

Comment: Explosion insensitive to 7, as long as 7 € (2, 3). All polynomial
F,’s are explosive.
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Degree-dependent Susceptible-Infected models

Observation
Disease spreading, real-world communication: Large-degree nodes have a

limited “time-budget” to meet and infect.
Miritello et. al. ‘13, Feldman Janssen ‘17, Giuraniuc et al. ‘16, Karsai et. al. ‘11

Model: Degree-penalised transmission delays
¢ Transmission delay through an edge:
Tww) =Lww -f(deg(u),deg(v), [u—v])

* Random component: i.i.d. random variables L, ) > 0

* Budget factor: f(deg(u),deg(v), |u - v|) depends on the degrees and
spatial distance
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Result: Explosion with degree-penalties
Is explosion still possible with penalty factors?

Theorem ( Komijathy, Lapinskas, Lengler (2020+))

F(t)>t® on [0,t].
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Result: Explosion with degree-penalties
Is explosion still possible with penalty factors?

Theorem ( Komijathy, Lapinskas, Lengler (2020+))

e Yes, when 1 < 3, and
e f=poly(deg(u),deg(v)) is a polynomial: Explosive if and only if for
some 3 < . = (3 - 1)/ deg(poly),
F(t)>t® on [0,t].
Otherwise, the model is not explosive.

Explosion with penalties requires a steep polynomial increase of L at 0.
Compare: without penalty factor, much easier, many sub-polynomials are
explosive.
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The epidemic curve on SSNMs

Fitnesses
Distance fat-tailed 7 € (2,3) |light-tailed 7 >3
weak decay doubly-exponential |(stretched) exponential
a€[1,2) or explosive
strong decay doubly-exponential |linear/polynomial
a€f2,00] or explosive (grid-like)
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Current and future work

The epidemic curve with degree penalties

Fitnesses
Penalty &Decay fat-tailed 7 € (2,3)
small doubly exponential
or explosive
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high
very high
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Current and future work

The epidemic curve with degree penalties

Fitnesses
Penalty &Decay fat-tailed 7 € (2,3)
small doubly exponential
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Current and future work

The epidemic curve with degree penalties

Fitnesses
Penalty &Decay fat-tailed 7 € (2,3)
small doubly exponential
deg(f) < (3-1)/8 or explosive
medium stretched exponential
deg(f) <2(3-1)/8
orace(1,2)
high polynomial (faster than
deg(f) < 2+2(3-7)/BV 2;}(;;_;1) grid-like)
and o > 2
very high linear
deg(f) > 5+2(3-7)/Bv2g7rs  |(grid-like)
and o > 2
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Proof ideas
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Proof of explosion when degf< (3-7)/
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Construction of a greedy path with finite total length
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Construction of a greedy path with finite total length

[~cheapest edge to good leader

some sub-boxes are bad

(leader has wrong weight),

but not many: F"

sub-boxes wvery good leader is con-
nected to many good leaders
(3)

(covér at least 172iof volume) |  on next level: F}

(k 4 1)-st annulus
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Construction of a greedy path with finite total length

* Let M,A,B > 1, Annulus(k),, be consecutive annuli of volume

Vol := MAE*
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Construction of a greedy path with finite total length

* Let M,A,B > 1, Annulus(k),, be consecutive annuli of volume
Vol := M8
¢ Tile each annulus with disjoint subboxes of volume voly := ME"
#{subboxes in Annulus(k)} > cMA-DE
e ‘Leader’ of a subbox := maximal weight vertex inside it

k 1+8
-1

Wleader(k) =cMP
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Construction of a greedy path with finite total length

* Let M,A, B> 1, Annulus(k),., be consecutive annuli of volume
Vol := MAE"

¢ Tile each annulus with disjoint subboxes of volume voly := ME"
#{subboxes in Annulus(k)} > cMA-DE

* ‘Leader’ of a subbox := maximal weight vertex inside it

Wieader(k) = com®
» #{leader neighbors in Annulus(k + 1) of a leader(k)}
LeaderDeg(k) = M4BT (1-2)

with summable error probability as long as i%‘i (1+B) > AB.
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Construction of a greedy path with finite total length

Greedy path
e Assume 0 € Co, of IGIRG

* From O, follow a path to leader(0) (its length is some finite random
variable X(u, L))

e Take the edge with minimal L between leader(0) and its leader(1)
neighbors.

e continue with this rule

29/34



Cost of the greedy path

Cost of Tgreedy < Cost to go to leader of Annulus(0)

oo
+ ) wH w# - omin Ly
I;) leader(k) * " leader(k+1) j<LeaderDeg(k) J

K 1+6

Wleader(k) = CMB -1
LeaderDeg(k) = CM(Afl)Bk“(lfs)?

H (_1)
n Lii <F k)/LeaderDeg(k
fSLeaderllgeg(k) Y t (5( )/ ' g( ))

F(2) < 2P

Plug everything in, we need that the sum is finite:
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Cost of the greedy path

Cost of Tgreedy < Cost to go to leader of Annulus(0)

oo
T o ) i
+ I;) Wleader(k) Wleader(k+1) min

Ly
j<LeaderDeg (k)

Bkli(s
Wleader(k) =cM” 71
LeaderDeg(k) = CM(Afl)Bk“(lfs)?

H (_1)
n Lii <F k)/LeaderDeg(k
jSLeaderIBeg(k) Y t (5( )/ ' g( ))

F(2) < 2P

Plug everything in, we need that the sum is finite:

S (s 25 -ap1-15)
k=0
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Cost of the greedy path

Greedy path has to exist and have finite cost when:

i MBk(/,,(1+B)%—(A—I)B(l—a)/ﬁ) < oo
k=0

Path is present:
=2(1+B)>A8

Finite-cost:
5
p(1+B)H - (A-1)B(1-¢)/8<0
This system of inequalities have a solution for A,B>1and e, > 0 if
7¢€(1,3)and
2up <3 -T.

Greedy path has finite cost. [
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Non-explosive regimes

Weighted model point-of-view

¢ In Sl-model, an edge is used precisely once.
* Pre-sample all transmission delays (C.)ece before the spread starts.
¢ Infection time dc(u, v) becomes: weighted distance wrt to the metric:

Infection time = weighted distance

dc(v,u) =  min (ZCQ)

7 path vou een
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Non-explosive regimes

Non-explosion when degf> (3 -17)/25
Tricky (truncated) path counting methods.

Stretched exponential and polynomial growth

See jamboard.
e Upper bounds: Constructing bridges (ala Kleinberg or ala Biskup)
e Lower bounds: Robust renormalisation techniques (ala Berger)
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Thank you for the attention!

Figure: Six instances of an infection spreading on a two-dimensional SSNM with different
parameters 7 and a.
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