Júlia Komjáthy

joint w: Bas Lodewijks; John Lapinskas, Johannes Lengler, Ulysse Shaller

November 2, 2020

• Activity in neuronal networks

- Activity in neuronal networks
- Travel on traffic networks

- Activity in neuronal networks
- Travel on traffic networks
- Cascading power blackouts in electric networks

- Activity in neuronal networks
- Travel on traffic networks
- Cascading power blackouts in electric networks
- Fake news on online social networks

- Activity in neuronal networks
- Travel on traffic networks
- Cascading power blackouts in electric networks
- Fake news on online social networks
- Opinion spreading in society

- Activity in neuronal networks
- Travel on traffic networks
- Cascading power blackouts in electric networks
- Fake news on online social networks
- Opinion spreading in society
- Spreading viruses on human contact networks

- Activity in neuronal networks
- Travel on traffic networks
- Cascading power blackouts in electric networks
- Fake news on online social networks
- Opinion spreading in society
- Spreading viruses on human contact networks

...

Most large real networks are *statistically very similar*. If you understand one, you understand others.

Most large real networks are *statistically very similar*. If you understand one, you understand others.

• Scale-free degree distributions: node degree distribution has fat tail (e.g. 10% of nodes might have 90% of connections)

Most large real networks are *statistically very similar*. If you understand one, you understand others.

- Scale-free degree distributions: node degree distribution has fat tail (e.g. 10% of nodes might have 90% of connections)
- Geometry: nodes have a fixed (or almost fixed) location in space

Most large real networks are *statistically very similar*. If you understand one, you understand others.

- Scale-free degree distributions: node degree distribution has fat tail (e.g. 10% of nodes might have 90% of connections)
- Geometry: nodes have a fixed (or almost fixed) location in space
- **Clustering, Local communities**: nodes form strongly connected groups based on geographical locations (e.g. cities).

Most large real networks are *statistically very similar*. If you understand one, you understand others.

- Scale-free degree distributions: node degree distribution has fat tail (e.g. 10% of nodes might have 90% of connections)
- Geometry: nodes have a fixed (or almost fixed) location in space
- **Clustering, Local communities**: nodes form strongly connected groups based on geographical locations (e.g. cities).
- Long-range connections: long distance connections are relatively common (e.g. airplanes, intercontinental fiberoptic cables)

Most large real networks are *statistically very similar*. If you understand one, you understand others.

- Scale-free degree distributions: node degree distribution has fat tail (e.g. 10% of nodes might have 90% of connections)
- Geometry: nodes have a fixed (or almost fixed) location in space
- **Clustering, Local communities**: nodes form strongly connected groups based on geographical locations (e.g. cities).
- Long-range connections: long distance connections are relatively common (e.g. airplanes, intercontinental fiberoptic cables)
- Small world phenomenon: All nodes can be reached via a few hops through the network (e.g. six degrees of separation)

Most large real networks are *statistically very similar*. If you understand one, you understand others.

- Scale-free degree distributions: node degree distribution has fat tail (e.g. 10% of nodes might have 90% of connections)
- Geometry: nodes have a fixed (or almost fixed) location in space
- **Clustering, Local communities**: nodes form strongly connected groups based on geographical locations (e.g. cities).
- Long-range connections: long distance connections are relatively common (e.g. airplanes, intercontinental fiberoptic cables)
- **Small world phenomenon**: All nodes can be reached via a few hops through the network (e.g. six degrees of separation)
- Hierarchical: most nodes are connected to at least one node with more connections than they have themselves

• 1750's – now: Differential equations: versatile but only complex models can include geometry / individuals

- 1750's now: Differential equations: versatile but only complex models can include geometry / individuals
- 1850's now: Branching models: simple models with rich behaviour, but no networks effects

- 1750's now: Differential equations: versatile but only complex models can include geometry / individuals
- 1850's now: Branching models: simple models with rich behaviour, but no networks effects
- 1950's now: Lattice models: simple models, but no scale-freeness, long-range, small world, hierarchy

- 1750's now: Differential equations: versatile but only complex models can include geometry / individuals
- 1850's now: Branching models: simple models with rich behaviour, but no networks effects
- 1950's now: Lattice models: simple models, but no scale-freeness, long-range, small world, hierarchy
- 1960's now: Random graphs: simple models, but no geometry, clustering

- 1750's now: Differential equations: versatile but only complex models can include geometry / individuals
- 1850's now: Branching models: simple models with rich behaviour, but no networks effects
- 1950's now: Lattice models: simple models, but no scale-freeness, long-range, small world, hierarchy
- 1960's now: Random graphs: simple models, but no geometry, clustering
- 2010's now: Hyperbolic random graphs and spatial scale-free network models: simple models, all desired properties

Spatial Scale-free Network Models

Ingredient 1: point process for the location of nodes

Spatial Scale-free Network Models

Ingredient 2: i.i.d. fitnesses for nodes, e.g. fat tailed, $\mathbb{P}(W > x) \asymp x^{1-\tau}$

Spatial Scale-free Network Models

Ingredient 3: random connections between nodes probability increasing with fitness and decaying with distance.

Spatial, clustered, long-range models

Hyperbolic geometric graphs (by Krioukov et al. '10)

Figure: Hyperbolic random graph simulations by Tobias Mülller

Spatial, clustered, long-range models

Figure: Scale-free percolation, by Joost Jorritsma

Spatial, clustered, long-range models

Geometric inhomogeneous random graphs

Figure: GIRG simulation by Joost Jorritsma

Infinite Geometric Inhomogeneous Random Graphs: IGIRG

- **d** = dimension
- Vertices: a homogeneous Poisson Point Process \mathcal{V} on \mathbb{R}^d
- Vertex-fitnesses: *iid fitness* W_v to each vertex $v \in \mathcal{V}$
- Edges: Connect $u, v \in \mathcal{V}$ conditionally independently w/p

 $\mathbb{P}(u \leftrightarrow v | W_u, W_v) \coloneqq h(u, v, W_u, W_v),$

where $h : \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R} \times \mathbb{R} \to [0, 1]$ measurable.

Infinite Geometric Inhomogeneous random graphs 2.

Choice of parameters:

• Fitnesses: W_v power law with exponent $\tau > 1$:

 $\mathbb{P}(W \ge x) \asymp 1/x^{\tau-1}$

(slowly varying correction term is allowed)

Edges: Connection probability satisfies

$$h(u, v, W_u, W_v) = \Theta\left(\min\left\{1, \left(\frac{W_u W_v}{\|u-v\|^d}\right)^\alpha\right\}\right),$$

• Threshold GIRG: Connection probability satisfies

$$h(u, v, W_u, W_v) = \mathbb{1}\{\|u - v\|^d \leq \Theta(W_u W_v)\}.$$

History of the models: vertex set \mathbb{Z}^d : Scale-free percolation; Deijfen, v/d Hofstad, Hooghiemstra '13; vertex set *PPP* on \mathbb{R}^d : Deprez, Hazra, Wüttrich, '15 threshold *h*: Hyperbolic random graphs, Krioukov, et al *n* vertices in $[0, 1]^d$: Bringmann, Keusch, Lengler '15 general connection prob: Lodewijks & K '19+

Theorem (BKL'17, BKL'16)

Let $\alpha > 1$. Fitness distribution W power law with $\tau > 2 \Rightarrow$ degree distribution power law with $\tau > 2$.

Theorem (DHH'13)

If $\alpha \leq$ 1 or τ < 2, each vertex has infinite degree.

Theorem (Bhattacharjee, Schulte '19)

The Hill's estimator is consistent for these models.

Theorem (DHH'13, BKL'17, KLL'19+)

Let $\alpha > 1, \tau \in (2, 3)$. Then there is a unique infinite component. For $\tau > 3$, there is a unique infinite component above a threshold edge-density.

For finite versions, there is a unique linear sized giant-component.

Theorem (DHH'13, BKL'17, KLL'19+)

Let $\alpha > 1, \tau \in (2,3)$. Then there is a unique infinite component. For $\tau > 3$, there is a unique infinite component above a threshold edge-density.

For finite versions, there is a unique linear sized giant-component.

Theorem (DHH'13, BKL'17, KLL'19+)

Let $\alpha > 1, \tau \in (2,3)$. Then there is a unique infinite component. For $\tau > 3$, there is a unique infinite component above a threshold edge-density.

For finite versions, there is a unique linear sized giant-component.

Theorem (DHH'13, BKL'17, KLL'19+)

Let $\alpha > 1, \tau \in (2,3)$. Then there is a unique infinite component. For $\tau > 3$, there is a unique infinite component above a threshold edge-density.

For finite versions, there is a unique linear sized giant-component. Average distance within a Volume N box:

$$\overline{\text{Dist}}(N) = \frac{1}{\binom{N}{2}} \sum_{u,v} d_G(u,v) = \begin{cases} \Theta(\log \log N) & \text{when } \tau \in (2,3), \alpha > 1\\ \Theta((\log N)^{\zeta}) & \text{when } \tau > 3, \alpha \in (1,2)\\ \Theta(\sqrt{N}) & \text{when } \tau > 3, \alpha > 2, \end{cases}$$

Spreading processes on networks

Susceptible-Infected model:

- At time *t* = 0 the source node is infected, all other nodes susceptible.
- if, on an edge {u, v}, u is infected and v is not, then v becomes infected after a random transmission delay L_(u,v).

The epidemic curve

The function that counts the total number of infected nodes before time *t*:

 $I(t) = #\{ infected nodes before time t \}$

The shape of the epidemic curve

Question

What does the epidemic curve look like for spreading on real networks?

Is it typically...

The shape of the epidemic curve

Question

What does the epidemic curve look like for spreading on real networks?

Is it typically...

• Linear?
Question

What does the epidemic curve look like for spreading on real networks?

Is it typically...

- Linear?
- Or polynomial?

Question

What does the epidemic curve look like for spreading on real networks?

Is it typically...

- Linear?
- Or polynomial?
- Or exponential?

Question

What does the epidemic curve look like for spreading on real networks?

Is it typically...

- Linear?
- Or polynomial?
- Or exponential?
- Or super-exponential?

Question

What does the epidemic curve look like for spreading on real networks?

Is it typically...

- Linear?
- Or polynomial?
- Or exponential?
- Or super-exponential?

Answer

Question

What does the epidemic curve look like for spreading on real networks?

Is it typically...

- Linear?
- Or polynomial?
- Or exponential?
- Or super-exponential?

Answer

Yes.

Qualitatively. Quantifying these statistically is very difficult.

Epidemic curves in real life

Figure: Covid-19 epidemic curves: US (left), Iran (right). Source: Johns Hopkins University Corona Dashboard

Epidemic curves in real life

Figure: Covid-19 epidemic curves: Colombia (left), Chile (right). Source: Johns Hopkins University Corona Dashboard

Fitnesses		
Distance	fat-tailed	light-tailed
weak decay		
strong decay		

Fitnesses		
Distance	fat-tailed	light-tailed
weak decay		
strong decay		linear/polynomial

Fitnesses		
Distance	fat-tailed	light-tailed
weak decay		(stretched) exponential
strong decay		linear/polynomial

Fitnesses		
Distance	fat-tailed	light-tailed
weak decay	doubly-exponential	(stretched) exponential
strong decay	doubly-exponential	linear/polynomial

Fitnesses		
Distance	fat-tailed	light-tailed
weak decay	doubly-exponential or explosive	(stretched) exponential
strong decay	doubly-exponential or <mark>explosive</mark>	linear/polynomial

Fitnesses		
Distance	fat-tailed $ au \in (2,3)$	light-tailed $\tau > 3$
weak decay $\alpha \in [1, 2)$	doubly-exponential or <mark>explosive</mark>	(stretched) exponential
strong decay $\alpha \in [2, \infty]$	doubly-exponential or <mark>explosive</mark>	linear/polynomial

On infinite networks

A spreading process is explosive on an infinite network if $I(t) = \infty$ for some $t < \infty$.

On infinite networks

A spreading process is explosive on an infinite network if $I(t) = \infty$ for some $t < \infty$.

On very large but finite networks

A *positive fraction* of the nodes is infected within *constant time, no matter how large the network is.*

On infinite networks

A spreading process is explosive on an infinite network if $I(t) = \infty$ for some $t < \infty$.

On very large but finite networks

A *positive fraction* of the nodes is infected within *constant time, no matter how large the network is.*

• 1970s: Grey, Harris, Sevastanov: explosion in Branching processes

On infinite networks

A spreading process is explosive on an infinite network if $I(t) = \infty$ for some $t < \infty$.

On very large but finite networks

A *positive fraction* of the nodes is infected within *constant time, no matter how large the network is.*

- **1970s:** Grey, Harris, Sevastanov: explosion in Branching processes
- 2010s: Amini, Devroye, Griffith, Olver: explosion in Branching random walks

On infinite networks

A spreading process is explosive on an infinite network if $I(t) = \infty$ for some $t < \infty$.

On very large but finite networks

A *positive fraction* of the nodes is infected within *constant time, no matter how large the network is.*

- **1970s:** Grey, Harris, Sevastanov: explosion in Branching processes
- 2010s: Amini, Devroye, Griffith, Olver: explosion in Branching random walks
- 2017+: Me: explosion on networks

Recall: infection uses i.i.d. transmission times $L_{u,v}$ on edges.

Theorem (Komjáthy, Lodewijks, SPA, 2020)

Explosion happens for SI on spatial scale-free network models when:

Recall: infection uses i.i.d. transmission times $L_{u,v}$ on edges.

Theorem (Komjáthy, Lodewijks, SPA, 2020)

Explosion happens for SI on spatial scale-free network models when:

• $\tau \in (1, 2]$: (but trivially and not realistic), or

Recall: infection uses i.i.d. transmission times $L_{u,v}$ on edges.

Theorem (Komjáthy, Lodewijks, SPA, 2020)

Explosion happens for SI on spatial scale-free network models when:

- $\tau \in (1, 2]$: (but trivially and not realistic), or
- $\tau \in (2,3)$, if and only if

$$\sum_{k=1}^{\infty} F_L^{(-1)} \Big(1/e^{e^k} \Big) < \infty,$$

where F_L is the cumulative distribution function of delays L.

Recall: infection uses i.i.d. transmission times $L_{u,v}$ on edges.

Theorem (Komjáthy, Lodewijks, SPA, 2020)

Explosion happens for SI on spatial scale-free network models when:

- $\tau \in (1, 2]$: (but trivially and not realistic), or
- $\tau \in (2,3)$, if and only if

$$\sum_{k=1}^{\infty} F_L^{(-1)} \left(1/e^{e^k} \right) < \infty,$$

where F_L is the cumulative distribution function of delays L.

Moreover, if we have explosion, we can characterise the epidemic curve.

Recall: infection uses i.i.d. transmission times $L_{u,v}$ on edges.

Theorem (Komjáthy, Lodewijks, SPA, 2020)

Explosion happens for SI on spatial scale-free network models when:

- $\tau \in (1, 2]$: (but trivially and not realistic), or
- $\tau \in (2,3)$, if and only if

$$\sum_{k=1}^{\infty} F_L^{(-1)} \left(1/e^{e^k} \right) < \infty,$$

where F_L is the cumulative distribution function of delays L.

Moreover, if we have explosion, we can characterise the epidemic curve. Finite model: $\frac{I_N(t)}{N} \xrightarrow{d} f(t - E_1)$, where $f(t) = \mathbb{P}(E_2 < t)$, and E_1 is a random shift.

Recall: infection uses i.i.d. transmission times $L_{u,v}$ on edges.

Theorem (Komjáthy, Lodewijks, SPA, 2020)

Explosion happens for SI on spatial scale-free network models when:

- $\tau \in (1, 2]$: (but trivially and not realistic), or
- $\tau \in (2,3)$, if and only if

$$\sum_{k=1}^{\infty} F_L^{(-1)} \left(1/e^{e^k} \right) < \infty,$$

where F_L is the cumulative distribution function of delays L.

• $\tau > 3$ explosion never happens.

Moreover, if we have explosion, we can characterise the epidemic curve. Finite model: $\frac{I_N(t)}{N} \xrightarrow{d} f(t - E_1)$, where $f(t) = \mathbb{P}(E_2 < t)$, and E_1 is a random shift.

Comment: Explosion insensitive to τ , as long as $\tau \in (2,3)$. All polynomial F_L 's are explosive.

Degree-dependent Susceptible-Infected models

Observation

Disease spreading, real-world communication: Large-degree nodes have a limited "time-budget" to meet and infect.

Miritello et. al. '13, Feldman Janssen '17, Giuraniuc et al. '16, Karsai et. al. '11

Model: Degree-penalised transmission delays

• Transmission delay through an edge:

 $T_{(u,v)} = L_{(u,v)} \cdot f(\deg(u), \deg(v), ||u - v||)$

- Random component: i.i.d. random variables $L_{(u,v)} \ge 0$
- Budget factor: f(deg(u), deg(v), ||u − v||) depends on the degrees and spatial distance

Is explosion still possible with penalty factors?

Theorem (Komjáthy, Lapinskas, Lengler (2020+))

 $F_L(t) \geq t^{\beta}$ on $[0, t_0]$.

Is explosion still possible with penalty factors?

Theorem (Komjáthy, Lapinskas, Lengler (2020+))

• Yes, when τ < 3, and

 $F_L(t) \geq t^{\beta}$ on $[0, t_0]$.

Is explosion still possible with penalty factors?

Theorem (Komjáthy, Lapinskas, Lengler (2020+))

- Yes, when au < 3, and
- $f = poly(\deg(u), \deg(v))$ is a polynomial: Explosive if and only if for some $\beta < \beta_c = (3 \tau)/\deg(poly)$,

 $F_L(t) \geq t^{\beta}$ on $[0, t_0]$.

Is explosion still possible with penalty factors?

Theorem (Komjáthy, Lapinskas, Lengler (2020+))

- Yes, when au < 3, and
- $f = poly(\deg(u), \deg(v))$ is a polynomial: Explosive if and only if for some $\beta < \beta_c = (3 \tau)/\deg(poly)$,

$$F_L(t) \geq t^{eta}$$
 on $[0, t_0]$.

Otherwise, the model is not explosive.

Is explosion still possible with penalty factors?

Theorem (Komjáthy, Lapinskas, Lengler (2020+))

- Yes, when au < 3, and
- $f = poly(\deg(u), \deg(v))$ is a polynomial: Explosive if and only if for some $\beta < \beta_c = (3 \tau)/\deg(poly)$,

$$F_L(t) \geq t^{\beta}$$
 on $[0, t_0]$.

Otherwise, the model is not explosive.

Explosion with penalties requires a steep polynomial increase of *L* at 0. Compare: without penalty factor, much easier, many sub-polynomials are explosive.

Fitnesses		
Distance	fat-tailed	light-tailed
weak decay		
strong decay		

Fitnesses		
Distance	fat-tailed	light-tailed
weak decay		
strong decay		linear/polynomial (grid-like)

Fitnesses		
Distance	fat-tailed	light-tailed
weak decay		(stretched) exponential
strong decay		linear/polynomial (grid-like)

Fitnesses		
Distance	fat-tailed	light-tailed
weak decay	doubly-exponential	(stretched) exponential
strong decay	doubly-exponential	linear/polynomial (grid-like)

Fitnesses		
Distance	fat-tailed	light-tailed
weak decay	doubly-exponential or explosive	(stretched) exponential
strong decay	doubly-exponential or <mark>explosive</mark>	linear/polynomial (grid-like)

Fitnesses		
Distance	fat-tailed $ au \in (2,3)$	light-tailed $\tau > 3$
weak decay $\alpha \in [1, 2)$	doubly-exponential or explosive	(stretched) exponential
strong decay $\alpha \in [2, \infty]$	doubly-exponential or <mark>explosive</mark>	linear/polynomial (grid-like)

Fitnesses	
Penalty &Decay	fat-tailed $ au \in (2,3)$
small	doubly exponential or explosive
medium	
high	
very high	

Fitnesses	
Penalty &Decay	fat-tailed $ au \in (2,3)$
small	doubly exponential or explosive
medium	stretched exponential
high	
very high	

Fitnesses	
Penalty & Decay	fat-tailed $ au \in (2,3)$
small	doubly exponential or explosive
medium	stretched exponential
high	polynomial (faster than grid-like)
very high	

Fitnesses	
Penalty &Decay	fat-tailed $ au \in (2,3)$
small	doubly exponential or explosive
medium	stretched exponential
high	polynomial (faster than grid-like)
very high	linear (grid-like)

Fitnesses	
Penalty &Decay	fat-tailed $ au \in (2,3)$
small $\deg(f) < (3 - \tau)/\beta$	doubly exponential or explosive
$\begin{array}{l} \textbf{medium} \\ \deg(f) < 2(3 - \tau)/\beta \\ \text{or } \alpha \in (1, 2) \end{array}$	stretched exponential
high $deg(f) < \frac{2}{d} + 2(3 - \tau)/\beta \lor 2\frac{\alpha - \tau + 1}{d(\alpha - 2)}$ and $\alpha > 2$	polynomial (faster than grid-like)
very high $deg(f) > \frac{2}{d} + 2(3 - \tau)/\beta \vee 2\frac{\alpha - \tau + 1}{d(\alpha - 2)}$ and $\alpha > 2$	linear (grid-like)

Proof ideas

Proof of explosion when deg $f < (3 - \tau)/\beta$

• Let M, A, B > 1, Annulus $(k)_{k>1}$ be consecutive annuli of volume

 $\operatorname{Vol}_k := M^{AB^k}$

• Let M, A, B > 1, Annulus $(k)_{k>1}$ be consecutive annuli of volume

$$\operatorname{Vol}_k \coloneqq M^{AB^k}$$

• Tile each annulus with disjoint subboxes of volume $vol_k := M^{B^k}$

#{subboxes in Annulus(k)} $\geq cM^{(A-1)B^{k}}$

• Let M, A, B > 1, Annulus $(k)_{k>1}$ be consecutive annuli of volume

$$\operatorname{Vol}_k \coloneqq M^{AB^k}$$

• Tile each annulus with disjoint subboxes of volume $vol_k := M^{B^k}$

#{subboxes in Annulus(k)} $\geq cM^{(A-1)B^{k}}$

• 'Leader' of a subbox := maximal weight vertex inside it

$$W_{\text{leader}(k)} = cM^{B^k \frac{1 \pm \delta}{\tau - 1}}$$

• Let M, A, B > 1, Annulus $(k)_{k>1}$ be consecutive annuli of volume

$$\operatorname{Vol}_k \coloneqq M^{AB^k}$$

• Tile each annulus with disjoint subboxes of volume $vol_k := M^{B^k}$

#{subboxes in Annulus(k)} $\geq cM^{(A-1)B^{k}}$

• 'Leader' of a subbox := maximal weight vertex inside it

$$W_{\text{leader}(k)} = cM^{B^k \frac{1\pm\delta}{\tau-1}}$$

#{leader neighbors in Annulus(k + 1) of a leader(k)}

LeaderDeg(k) =
$$cM^{(A-1)B^{k+1}(1-\varepsilon)}$$

with summable error probability as long as $\frac{1-\delta}{\tau-1}(1+B) \ge AB$.

Greedy path

- Assume $0 \in \mathcal{C}_{\infty}$ of IGIRG
- From 0, follow a path to leader(0) (its length is some finite random variable X(μ, L))
- Take the edge with minimal L between leader(0) and its leader(1) neighbors.
- continue with this rule

Cost of the greedy path

Cost of $\pi_{\text{greedy}} \leq \text{Cost to go to leader of Annulus(0)}$ + $\sum_{k=0}^{\infty} W_{\text{leader}(k)}^{\mu} W_{\text{leader}(k+1)}^{\mu} \cdot \min_{j \leq \text{LeaderDeg}(k)} L_{kj}$ $W_{\text{leader}(k)} = cM^{B^k \frac{1 \pm \delta}{\tau - 1}}$ LeaderDeg(k) = $cM^{(A-1)B^{k+1}(1-\varepsilon)}$, $\min_{j \leq \text{LeaderDeg}(k)} L_{kj} \leq F_L^{(-1)}(\xi(k)/\text{LeaderDeg}(k))$ $F_L^{(-1)}(Z) \leq Z^{1/\beta}$

Plug everything in, we need that the sum is finite:

Cost of the greedy path

Cost of $\pi_{\text{greedy}} \leq \text{Cost to go to leader of Annulus(0)}$ + $\sum_{k=0}^{\infty} W_{\text{leader}(k)}^{\mu} W_{\text{leader}(k+1)}^{\mu} \cdot \min_{j \leq \text{LeaderDeg}(k)} L_{kj}$ $W_{\text{leader}(k)} = cM^{\beta^k \frac{1 \pm \delta}{\tau - 1}}$ LeaderDeg(k) = $cM^{(A-1)\beta^{k+1}(1-\varepsilon)}$, $\min_{j \leq \text{LeaderDeg}(k)} L_{kj} \leq F_L^{(-1)}(\xi(k)/\text{LeaderDeg}(k))$ $F_L^{(-1)}(Z) \leq Z^{1/\beta}$

Plug everything in, we need that the sum is finite:

$$\sum_{k=0}^{\infty} M^{B^k \left(\mu (1+B) \frac{1+\delta}{\tau-1} - (A-1)B(1-\varepsilon)/\beta \right)} < \infty$$

Cost of the greedy path

Greedy path has to exist and have finite cost when:

$$\sum_{k=0}^{\infty} M^{B^k \left(\mu(1+B) \frac{1+\delta}{\tau-1} - (A-1)B(1-\varepsilon)/\beta \right)} < \infty$$

Path is present:

$$\frac{1-\delta}{\tau-1}(1+B) \ge AB$$

Finite-cost:

$$\mu(\mathbf{1}+B)\frac{\mathbf{1}+\delta}{\tau-\mathbf{1}}-(A-\mathbf{1})B(\mathbf{1}-\varepsilon)/\beta<0$$

This system of inequalities have a solution for A, B > 1 and $\varepsilon, \delta > 0$ if $\tau \in (1, 3)$ and

$$2\mu\beta < 3 - \tau.$$

Greedy path has finite cost.

Non-explosive regimes

Weighted model point-of-view

- In SI-model, an edge is used precisely once.
- Pre-sample all transmission delays $(C_e)_{e \in \mathcal{E}}$ before the spread starts.
- Infection time $d_c(u, v)$ becomes: weighted distance wrt to the metric:

Infection time = weighted distance

$$d_{\mathcal{C}}(v,u) = \min_{\pi: \text{ path } v \to u} \left(\sum_{e \in \pi} C_e \right)$$

Non-explosive regimes

Non-explosion when deg $f > (3 - \tau)/2\beta$

Tricky (truncated) path counting methods.

Stretched exponential and polynomial growth

See jamboard.

- Upper bounds: Constructing bridges (ala Kleinberg or ala Biskup)
- Lower bounds: Robust renormalisation techniques (ala Berger)

Thank you for the attention!

Figure: Six instances of an infection spreading on a two-dimensional SSNM with different parameters τ and $\alpha.$