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What is a complex network?

Aim: Study realistic models for real-life networks.

Many real-world networks, such as WWW, social, financial, neural, or
biological networks, exhibit general pattern (“stylized facts”):

the length of a smallest path between two vertices is small w.r.t. the
system size (small world),

the degrees of vertices exhibit a power law (a scale-free network),

vertices that are “geographically” close are likely to be connected
(geometric clustering),

vertices with high degree are likely to be connected even if far away
from each other (hierarchies).



The weight-dependent random connection model

Poisson process of unit intensity on Rd × [0, 1]. Interpret Poisson point
x = (x , s) as a vertex at position x with weight s−1.

Two vertices x = (x , s) and y = (y , t) are connected by an edge
independently with probability φ(x, y) for a connectivity function

φ : (Rd × [0, 1])× (Rd × [0, 1])→ [0, 1],

We assume throughout that φ has the form

φ(x, y) = φ
(
(x , s), (y , t)

)
= ρ
(
h(s, t, |x − y |)

)
for a non-increasing, integrable profile function ρ : R+ → [0, 1] and a
suitable kernel function h : [0, 1]× [0, 1]× R+ → R+.

W.l.o.g. assume
∫
Rd ρ(|x |) dx = 1.

Different kernel function yields different network properties. . .



Various connection kernels
Plain kernel as

hplain(s, t, v) =
1

β
vd .

Special case: ρ(r) = 1[0,a] for suitable a (Gilbert disc model).
Yields random connection model.
Sum kernel

hsum(s, t, v) =
1

β

(
s−γ + t−γ

)−1
vd .

Special case: ρ(r) = 1[0,a] for suitable a (Boolean model).
Further variant: min-kernel defined as

hmin(s, t, v) =
1

β
(s ∧ t)γvd ,

but hsum ≤ hmin ≤ 2hsum.
Product kernel

hprod(s, t, v) =
1

β
sγtγvd ,

Continuum version of scale-free percolation
Preferential attachment kernel

hpa(s, t, v) =
1

β
(s ∨ t)1−γ(s ∧ t)γvd ,

gives age-dependent random connection model



Example: Product kernel

Random graph with product kernel (γ = 0.6, δ = 2).



Terminology of the models in the literature

Profile Kernel Model Reference
indicator plain Random geometric graph, Gilbert disc model Penrose ’93
general plain Random connection model Meester-Penrose-Sarkar ’97

Soft random geometric graph Penrose ’16
indicator sum Boolean model Hall ’85, Meester ’94
indicator min Scale-free Gilbert graph Hirsch ’17
polynomial prod Inhomogeneous long-range percolation Deprez-Hazra-Wüthrich ’15

Continuum scale-free percolation Deprez-Wüthrich ’18
general prod Geometric inhomogeneous random graphs Bringmann-Keusch-Lengler ’19
general pa Age-dependent random connection model Gracar et al. ’19

Remarks:

All models except plain kernel are scale-free with power-law
exponent τ = 1 + 1

γ .

Henceforth assume power-law profile function: ρ(v) ≈ v−δ, v →∞.

If δ > 1 and γ < 1, then resultig graph is locally finite for all β > 0.

What are the structural properties of the (a.s. unique) infinite
component?



Random walk on graphs: recurrent or transient?

Random walk is recurrent if a.s. returns to starting point.
Random walk is transient if never returns with positive probability.



Theorem. (Joint work with P. Gracar, C. Mönch, P. Mörters)
Consider the weight-dependent random connection model with profile
function ρ(v) ≈ v−δ. Then the the infinite connected component (if it
exists) is recurrent resp. transient according to the following graph:
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Preferential attachment kernel,
Sum kernel, Min kernel.
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Product kernel.

Rem.: Product kernel in discrete version in H., Hulshof, Jorritsma (2017).



Transience for γ > 1/2 in product kernel

Theorem. For product kernel, the supercritical cluster is transient
whenever γ > 1/2.

Use a renormalization argument via multiscale ansatz:

Group vertices in boxes, call boxes ‘good’ or ‘bad’ depending on
vertices and edges inside these boxes.

Iterate this process by considering larger and larger boxes. Also these
larger boxes are ‘good’ or ‘bad’ depending on number of ‘good’
sub-boxes and edges between the sub-boxes.

This implies transience if a fixed point is on all scales in a ‘good’ box
(possible if β large enough).



Transience proof for γ > 1/2 and β sufficiently large

Multiscale ansatz: Fix sequences (Cn)n, (Dn)n, (un)n.

1-stage boxes have side length D1. Good if ≥ C1 vertices in box, and
largest vertex (“1-dominant vertex”) has weight ≥ u1.

For n ≥ 2: n-stage boxes are formed of Dd
n (n − 1)-stage boxes.

Good if

≥ Cn good (n − 1)-stage boxes,

in one of the good (n − 1)-stage boxes there is a vertex with weight
≥ un,

in any good (n − 1)-stage box, the (n − 2)-dominant vertices form a
clique.

n stage, Cn = 3
(n− 1) stage, Cn−1 = 2
(n− 2) stage, Cn−2 = 1
(n− 3)-th stage



W

Z

un

un−1

un−2

un−3

Sketch of the renormalization scheme in d = 1 for
Dn = 4,Dn−1 = 3,Dn−2 = 2, Cn = 3,Cn−1 = 2,Cn−2 = 1.
‘Good’ boxes are marked with a solid line, ‘bad’ boxes have a dashed line.



Transience proof for γ > 1/2 and β sufficiently large

A choice that works:

Dn := 2(n + 1)2, Cn := (n + 1)2d ,

un := dα/2(n + 2)d(2−γ)/22(n+2)α/2((n + 3)!)α.

Ln := P(n-box containing 0 is good).

Can show: P
(⋂∞

n=1 Ln
)
> 0 provided λ large enough and ε small enough.

Lemma [Berger 2002]: Graph generated by edges in good boxes is
transient if

∑∞
n=1 1/Cn <∞.

Extra argument (“coarse-graining”) for “small” β > βc .

Arguments for other kernels are similar.
Preferential attachment kernel is most complicated.



Weight-dependent random connection model

Summary:

Weight-dependent random connection model has high universality.

Multiscale-Ansatz is strong technique in order to prove structural
properties of random graphs in great generality.

Gives excellent control in supercritical regime
(= if infinite components exist).

Open:

What happens if infinite components are about to appear
(so-called critical behaviour)?



How are large components arising?

From now on:

only ‘plain kernel’, i.e. connection probability (only) dependent on
spatial distance of points;

fix transition probabilities and vary the intensity of the Poisson
process.



An example: The Boolean model (Gilbert disk model)

low-density Poisson process high-density Poisson process

Yields random graph embedded in Rd . Connectivity properties are
determined by density of underlying Poisson process.
First studied by Gilbert 1961.
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Generalizing: The Random Connection Model

Construction:

η is Poisson point process with intensity λ > 0.

Add edge between x , y ∈ η with probability ϕ(x , y) = ϕ(|x − y |).

Example: Boolean percolation with fixed radius R: ϕ(x , y) = 1|x−y |≤2R .

Aim: Study this model for critical percolation

λc := inf{λ | the random graph has an infinite component}

A little history:
M. Penrose ’91: 0 < λc <∞ whenever

∫
ϕ <∞.

R. Meester ’95: ∀λ < λc ∃c > 0 : Pλ(|C| > k) ≤ e−ck

(“sharp phase transition”).
R. Meester, M. Penrose, A. Sarkar ’97: λc

∫
ϕ→ 1 as d →∞.



A little more formal:

R[2d ] = 2-element subsets of Rd

Enumerate Poisson points η = {Xi : i ∈ N}.
Interpret random connection model as point process on R[2d ] × [0, 1]:

ξ :=
{

({Xi ,Xj},Ui,j) : Xi < Xj , i , j ∈ N
}
.

Add edge between Xi and Xj whenever Ui,j ≤ ϕ(|Xi − Xj |).

ξx is ξ with an extra point added at x ∈ Rd

(together with random connections from x to all other points)

ξx,y is ξ with two extra points added at x , y ∈ Rd

(together with random connections to all other points)

Cluster C(x) := {y ∈ ηx : x ↔ y in ξx}
2-pt-fct τ(x , y) := Pλ(x ←→ y in ξx,y )

Now can define:
θ(λ) = Pλ(|C(0)| =∞) λc = inf{λ | θ(λ) > 0}.



Main result: An infrared bound

Theorem. (Joint work with R. van der Hofstad, G. Last, K. Matzke)
If (A) d > 6 sufficiently large (and ϕ “well-behaved”)
or (B) α > 0, d > 3(α ∧ 2) and ϕ(r) = 1

(r/L)d+α ∨ 1 (L suff. large)

then exists A > 0 such that for all λ < λc :

|τ̂λ(k)| ≤ A

ϕ̂(0)− ϕ̂(k)
, k ∈ Rd (infrared bound).

N.B. f̂ denotes Fourier transform of Rd -valued function f .

Consequences:

1 ∆λc := τ∗3λc
(0) =

∫
τ̂λc (k)3 dk <∞, the famous triangle condition.

2 No percolation at criticality: θ(λc) = 0

3 Critical exponents have mean-field values,e.g. Eλ|C(0)| � (λ− λc)−1

4 Bounds on λc : 1 ≤ λc
∫
ϕ ≤

{
1 + O(d−1/4) in case (A)

1 + O(L−d) in case (B)
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Proving the infrared bound using lace expansion I

2 important ingredients:

Mecke-formula for all f : (R[2d ] × [0, 1])× Rd → R≥0:

Eλ
(∑

x∈η
f (ξ, x)

)
= λ

∫
Rd

Eλ
(
f (ξx , x)

)
dx .

Example: Expected cluster size

Eλ
(
|C(0)| in ξ0

)
= 1 + Eλ

(∑
x∈η

1{0↔x in ξ0}

)
= 1 + λ

∫
Rd

τλ(x) dx = 1 + λτ̂λ(0).

van den Berg - Kesten (“BK”) inequality: Let A ◦ B denote spatial
disjoint occurrence of increasing events A and B.
Then Pλ(A ◦ B) ≤ Pλ(A)Pλ(B).



Proving the infrared bound using lace expansion II

Proof strategy: adapt lace expansion to point processes.
(Lace expansion for percolation on Zd by T. Hara & G. Slade ’90.)

Random connection model: τ(x , y) := P(x ←→ y in ξx,y )

τ(x , y) = ϕ(x , y) + Π(x , y) + λ

∫ (
(ϕ(x , z) + Π(x , z)) τ(z , y) dz

Expansion of τ(x , y) identifies (complicated) function Π(x , y) in above

equation. This resembles completely different model:

Random walk on ηx,y : G (x , y) :=
∑
n≥1

P(x
n−→ y in ηx,y ) (Green’s fct)

G (x , y) = ϕ(x , y) + λ

∫
ϕ(x , z) G (z , y) dz

Strategy: Show that |Π(x , y)| sufficiently small in order to deduce that
τ(x , y) ≈ G (x , y). Works best in Fourier space.



Summary

Completed:

Have derived lace expansion for random connection model.

Analysis of lace expansion obtains triangle condition,
understand critical behaviour.

Proof works directly in continuum (no discretization).

Challenges:

Weight-dependent random connection model

Random connection model with more general point processes
(beyond Poisson)




