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Background and goals of this talk

In simple words:

� We throw N particles randomly into a box in Rd with volume N/ρ.

� The particles are a priori independent and uniformly distributed, but ...

� ... we modify their joint distribution by using an exponential pair-interaction weight with

strength β that makes clumping impossible and prefers a certain positive distance

between any two particles.

� Describing what we will see in the limit N →∞ is generally very difficult, but ...

� ... for small ρ and large β we will see a clear decomposition into small groups and can

approximately describe the configuration with explicit formulas, and ...

� ... for fixed ρ and large β, we will see in dimension 1 that the particles approach a regular

grid.

for physicists:

� We consider a classical stable interacting many-particle system with attraction via a

Lennard–Jones-type potential in continuous space.

� We study the transition between gaseous and solid phase in the thermodynamic limit.

� We obtain explicit results in two particular regimes at low temperature, β →∞:

low density ρ ↓ 0, fixed density ρ ∈ (0,∞).
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The two regimes

The dilute low-temperature regime: much empty space, strong interaction

� The particles organise themselves into small groups called clusters or droplets.

� We approximate the system with a well-known ideal mixture of clusters and prove that the

difference vanishes exponentially with vanishing temperature.

� The questions about a percolation phase transition and existence of Gibbs measures are

naturally contained in our description.

The low-temperature regime: approximating a grid – crystallization

� We consider particular potentials in dimension one at fixed, sufficiently large density ρ.

� The particles form� N clusters with optimal inner and boundary structure and Gaussian

approximation.

We always assume that ρ is smaller than the close-packing threshold ρcp (which is∞ if there

is no hard core).
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Energy

Energy of N particles in Rd:

UN (x) = UN (x1, . . . , xN ) =
N∑

i,j=1
i6=j

v
(
|xi − xj |

)
, for x = (x1, . . . , xN ) ∈ (Rd)N .

Pair-interaction function v : [0,∞)→ (−∞,∞] of Lennard-Jones type:

� v(r)→∞ as r ↓ 0 sufficiently fast:

short-distance repulsion (possibly hard-core)

implying stability,

� strict negative minimum at some

a ∈ (0,∞):

preference of a certain positive distance,

� compact support:

bounded interaction length.

v is called stable if infN∈N
1
N

infx∈(Rd)N U(x) > −∞.
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Random Clusters

The Gibbs measure

P(N)

β,Λ(dx) =
1

ZΛ(β,N)N !
e−βUN (x) dx, x ∈ ΛN , β > 0,

with partition function

ZΛ(β,N) =
1

N !

∫
ΛN

e−βUN (x) dx.

The connectivity structure

x and y are connected if |x− y| ≤ R. Clusters (droplets) = connected components

Nk(x) = number of k-clusters in x = (x1, . . . , xN )

k-cluster density: ρk,Λ(x) =
Nk(x)

|Λ| ,

cluster size distribution: ρΛ =
(
ρk,Λ

)
k∈N.

ρΛ is an MN/|Λ|-valued random variable, where

Mρ :=
{

(ρk)k∈N ∈ [0,∞)N
∣∣∣ ∑
k∈N

kρk ≤ ρ
}
, ρ ∈ (0,∞).
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Questions and answers

� Is there a formula for the limiting free energy limN→∞
1
|ΛN |

logZΛN (β,N)?

Yes, and it as much to do with Gibbs measures, but is not good enough for proving a

phase transition. But it admits proving percolation properties [JANSEN 2016], Part (I)

� Is a phase transition in β visible in the configuration? or in the uniqueness of Gibbs

measures?

very difficult to say! (I do not know results.)

� Can one understand the limiting cluster-size distribution?

Difficult already for β = 0; doable for large β and small ρ. =⇒ [JANSEN, K., METZGER

2011], [JANSEN, K. 2012], Part (II)

� If for β =∞ there is crystallisation; do we have this also for large β?

Very difficult in d ≥ 2, recently proved in d = 1. =⇒ [JANSEN, K., SCHMIDT, THEIL

2020/21], Part (III)
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Free energy and Gibbs measures (I)

Using level-three large-deviation theory, one can express the limiting free energy in terms of a

variational formula. Minimisers turn out to be Gibbs measures, but phase transitions in the

sense of non-uniqueness is open.

Using a Poisson point process ωP and the interaction function

F (ω) =
∑

x∈ω∩U

∑
y∈ω

v(|x− y|), U = [− 1
2
, 1

2
]d

and the counting function NU (ω) = ω(U), we can write

ZΛ(β,N) = E
[
e−β|Λ|〈F,RΛ(ωP)〉1l{〈NU , RΛ(ωP)〉 = ρ}

]
,

where

RΛ(ω) =
1

|Λ|

∫
Λ

dx δθx(ω)

is the empirical stationary field. The latter satisfies a large-deviation principle [GEORGII/ZESSIN

(1993)]

lim
N→∞

1

|ΛN |
log P(RΛN (ωP) ≈ P ) = −I(P )

where I(P ) is the entropy density function of ωP
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Free energy and Gibbs measures (II)

Then the limiting free energy can be written (under suitable assumptions on v) as

f(β, ρ) = − 1

β
lim
N→∞

1

|ΛN |
logZΛN (β,N)

= − 1

β
+ inf

{ 1

β
I(P ) + 〈F, P 〉 : P ∈ Pθ, 〈NU , P 〉 = ρ

}
.

[JANSEN 2016] extends this formula to the cluster-size distribution. Indeed, define

ρk(P ) =

∫
P (dω)

∑
x∈ω∩U

1l{|Cω(x)| = k},

where Cω(x) is the cluster that contains x, then

Variational formula for constrained partition function

f(β, ρ, (ρk)k∈N) = − 1

β
lim
N→∞

1

|ΛN |
log

∫
ΛN
N

dx e−βUN (x)1l{ρk,ΛN (x) = ρk ∀k ∈ N}

= − 1

β
+ min

{ 1

β
I(P ) + 〈F, P 〉 : P ∈ Pθ, ρk(P ) = ρk ∀k ∈ N

}
.
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Gibbs measures

Brief explanation of this concept:

For a given point cloud (xi)i∈I in Rd, a collection of interaction functionals

{φ(xi, xj)}i6=j ∪ {f(xi)}i∈I is given. For any box Λ and any boundary configuration xΛc in

Λc, a probability measure on configurations xΛ in Λ is defined by

P(xΛc )

Λ,µ

(
dxΛ

)
=

1

Z
(xΛc )

Λ,µ

e
∑
i,j φ(xi,xj) eµ

∑
i∈I f(xi)PΛ

(
d(xΛ)

)
,

where the reference measure PΛ is the restriction (better: projection) of a standard PPP to Λ,

and µ ∈ R is called a chemical potential.

Now a probability measure Q ∈ Pθ is called a Gibbs measure for the interacting functionals

and the chemical potential if, for any box Λ,∫
Q(dxΛc)P(xΛc

)

Λ,µ (dxΛ) = QΛ(dxΛ),

In our case, φ(x, y) = −βv(|x− y|) and f(x) = 1.

Rule of thumb: Existence often no problem, but uniqueness. The latter characterises a phase

transition.
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Gibbs measures and percolation

Recall the

Gibbs variational principle, [GEORGII 95]

P ∈ Pθ is a (β, µ)-Gibbs measure (then we write P ∈ Gβ,µ) if and only if it minimizes
1
β
I(P ) + 〈F, P 〉 − µρ(P ).

The parameter µ is called a chemical potential, and ρ(P ) =
∑
k∈N kρk(P ).

Gibbs measures and minimizers, [JANSEN 2016]

(ρk)k minimises ⇐⇒ ∃P ∈ Pθ ∩ Gβ,µ for some µ ∈ R,
satisfying ρ(P ) = ρ, ρk(P ) = ρk ∀k.

Now note the general statement

Percolation, [JANSEN 2016]

For any P ∈ Pθ ,∑
k∈N

kρk(P ) < ρ(P ) ⇐⇒ P (there is an infinite cluster) > 0.
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Remarks

� v is assumed to have a compact support and an attractive tail (v is negative just before

the supremum of the support), furthermore superstable and integrable where it is finite.

These are standard and imply, e.g., existence of Gibbs measures.

� Furthermore, (Rd)N 3 x 7→ U(x) is assumed to have a minimizer that has positive

spacing. This and the following condition is used for bounds on percolation (seee later).

� The most restrictive assumption is that this map has a minimizer with diameter

≤ O(N1/d). Criteria for this are known [THEIL (2006)] in d = 2, but not in d ≥ 3.

� The variational approach is able to make a link with Gibbs measures and their percolation

properties, but not (yet) with phase transitions (in the sense of non-uniqueness of Gibbs

measures).

� Criteria for (non-)percolation will come later.
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Regimes considered

We study the cluster-size distribution in the box Λ = [0, L]d in the thermodynamic limit

N →∞, L = LN →∞, such that
N

LdN
→ ρ ∈ (0,∞),

followed by the dilute low-temperature limit [JANSEN, K., METZGER AAP 2015]

β →∞, ρ ↓ 0 such that − 1

β
log ρ→ ν ∈ (0,∞),

Here we study the statistics of the sizes of the clusters in terms of a large-deviation principle.

constrained free energy : fΛ(β, N|Λ| , (ρk)k) := − 1

β|Λ| logZΛ(β,N, (ρk)k).

limiting constrained free energy : f(β, ρ) := lim
N,L→∞
N/Ld→ρ

f[0,L]d(β, N
Ld
, (ρk)k).

[JANSEN (2016)] showed

1

N !

∫
ΛN

e−βUN (x)1l
{

(ρk,Λ(x))k∈N ≈ (ρk)k∈N
}

dx ≈ exp
(
−β|Λ|f(β, ρ, (ρk)k∈N)

)
,
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LDP in the thermodynamic limit

Rate function

Jβ,ρ
(
(ρk)k∈N

)
= β

(
f(β, ρ, (ρk)k∈N)− f(β, ρ)

)
.

An LDP without identification of the rate function:

Large deviation principle with convex rate function, [JKM15]

The distribution of ρΛ under P(N)

β,Λ with Λ = [0, L]d satisfies a large deviation principle with

speed |Λ| = Ld. The rate function Jβ,ρ : Mρ+ε → [0,∞] is convex, and its effective domain

{Jβ,ρ(·) <∞} is contained in Mρ. In particular, ρΛ convereges weakly towards the

minimizers (ρk)k of Jβ,ρ (which are the ones of f(β, ρ, ·)).

Let us derive a much clearer picture in the dilute low-temperature limit.

Heuristics: In the regime β →∞, ρ→ 0 such that−β−1 log ρ→ ν ∈ (0,∞),

� total entropy ≈ sum of the entropies of the clusters,

� excluded-volume effect between the clusters may be neglected,

� mixing entropy may be neglected.
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Dilute low-temperature limit

The ground state energy, i.e., zero temperature : EN := inf
x∈(Rd)N

UN (x).

stability & subadditivity =⇒ e∞ := lim
N→∞

EN
N
∈ (−∞, 0) exists.

Interpret qk = kρk/ρ as the probability that a given particle lies in a k-cluster.

Approximate rate function: gν
(
(qk)k

)
:=
∑
k∈N

qk
Ek − ν
k

+
(

1−
∑
k∈N

qk
)
e∞

on the set Q :=
{

(qk)k∈N ∈ [0, 1]N
∣∣∣ ∑
k∈N

qk ≤ 1
}

Γ-convergence of the rate function, [JKM15]

In the limit β →∞, ρ→ 0 such that−β−1 log ρ→ ν, this function Γ-converges to gν :

Q → R ∪ {∞}, (qk)k 7→
1

ρ
f
(
β, ρ, ( ρqk

k
)k∈N

)
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Explanation of the approximations

� We approximate f(β, ρ, (ρk)k) by an ideal gas of clusters, neglecting the “excluded

volume”:

f ideal(β, ρ, (ρk)k) :=
∑
k∈N

kρkf
cl
k (β) +

(
ρ−

∑
k∈N

kρk
)
fcl
∞(β) +

1

β

∑
k∈N

ρk(log ρk − 1)

=
∑
k∈N

ρk log
ρk

Zcl(β, k)
− 1

β

∑
k∈N

ρk +
(
ρ−

∑
k∈N

kρk
)
fcl
∞(β),

(fcl
k (β) = 1

k
logZcl(β, k) = free energy per particle in a cluster of size k.)

� We approximate f ideal(β, ρ, ( ρqk
k

)k∈N) with ρgν(q) using two simplifications:

� cluster internal free energies≈ ground state energies: fcl
k (β) ≈ Ek.

� (recall qk = kρk/ρ)

1

β

∑
k∈N

ρk(log ρk − 1) =
∑
k∈N

ρk
log ρ

β
+
ρ

β

∑
k∈N

qk
k

(
log

qk
k
− 1
)

≈
∑
k∈N

ρk
log ρ

β

≈ −ρ
∑
k∈N

qk
ν

k
.
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Corollary: convergence of minimisers

Recall

gν
(
(qk)k

)
:=
∑
k∈N

qk
Ek − ν
k

+
(

1−
∑
k∈N

qk
)
e∞.

Consequences of Γ-convergence, [JKM15]

In the same limit β →∞, ρ ↓ 0 such that− 1
β

log ρ→ ν,
�

1

ρ
f(β, ρ)→ min

Q
gν =: µ(ν),

� if ν is not a kink point of µ, then any minimiser of Jβ,ρ converges to the minimiser of gν .

� In the temperature-density plane, we look at curves approaching the origin along lines

where ρ = e−ν/T , where T = 1/β is the temperature.

� It is easy to see that ν 7→ µ(ν) = infQ gν is piecewise affine and has at least one kink

point. If ν is not a kink point, then gν has the unique minimizer δk(ν) (Dirac sequence)

with k(ν) the unique minimizer of k 7→ (Ek − ν)/k.
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Corollary: LLN for cluster sizes

We put ν∗ = infN∈N[EN −Ne∞] ∈ (0,∞) (≈ surface energy)

Limiting distributions of cluster sizes, [JKM15]

Let ν ∈ (0,∞) be not a kink point, and fix ε > 0. Then, if β is sufficiently large, ρ sufficiently

small and− 1
β

log ρ is sufficiently close to ν, for boxes ΛN with volume N/ρ,

lim
N→∞

P(N)

β,ΛN

(∣∣∣k(ν)

ρ
ρk(ν),Λ − 1

∣∣∣ > ε
)

= 0 if ν > ν∗,

lim
N→∞

P(N)

β,ΛN

(∑
k∈N

ρk,Λ > ε
)

= 0 if ν < ν∗.

Interpretation: In this two-step limit,

� the model has only one cluster size,

� there is at least one “phase transition”, possibly much more,

� in the high-temperature phase ν � 1, all clusters are singletons,

� in any intermediate phase, all clusters have size k(ν),

� in the low-temperature phase ν < ν∗, there are only infinite clusters.
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Approximation with ideal mixture

� The approximation with gν is difficult to interpret physically, and gν has some “unphysical”

properties: possibly many phase transitions of ν 7→ µ(ν), and many minimisers of gν in

the kinks. We think that just one of these phase transitions is “physical”, the others

correspond to cross-overs inside the gas phase.

� Much better is the approximation with the ideal mixture of droplets, f ideal, which is

known, under reasonable assumptions, to have only one phase transition.

� These assumptions are on the compactness of the shape of the relevant configurations at

positive, but low temperature:

� The main contribution to the cluster internal energy comes from compact

(d-dimensional) configurations,

� the correction term in the convergence fcl
k (β)→ fcl

∞(β) is of surface order:

kfcl
k (β)− kfcl

∞(β) ≥ Ck1−1/d.

(Verification seems out of reach yet.)

� [JANSEN, K. 2012] proves rigorous bounds for the comparison of the original model with

the ideal-mixture model, which are exponentially small in vanishing temperature.
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Bounds for percolation

Back to the Gibbs measures from [JANSEN 2016]:

Bounds on (non-)percolation, [JANSEN 2016]

� For ν > ν∗ and ρ < e−βν , for all large β, any related Gibbs measure P has no infinite

cluster, and the cluster size distribution has exponentially decaying tails.

� For ν < ν∗ and ρ > e−βν , for large β, P has an infinite cluster almost surely.

� Conjecture: For some large β and small ρ, there are Gibbs measures that percolate with

probability in (0, 1) (known to be true in the Zd-case!).

Classical many-body systems · 30 June, 2022 · Page 19 (25)



Crystallisation: zero temperature

Recall the ground state energy and its limit:

EN := inf
x∈(Rd)N

UN (x) and e0 := lim
N→∞

EN
N
∈ (−∞, 0).

The minimising configurations (the ground states) are shown to approach a crystal in d = 2 in

[THEIL 2006)] in d = 2 (after pioneering works like [HEITMANN/RADIN 1980], [RADIN 1981] and

[SÜTŐ 2005]) and in [FLATLEY/THEIL 2015] in d = 3, under some technical conditions.

It is widely open to describe how the finite-box configuration approaches the crystal. Most

contributions to this question are made in strongly simplifying models.

Here we turn to one dimension and give detailed answers [JANSEN, K., SCHMIDT, THEIL 2020]

and [JKST 2021].

The crystalline structure of the ground states for our potential have been shown in

[VENTEVOGEL 1978], [GARDNER/RADIN 1979], [RADIN 1984], [RADIN/SCHULMAN 1983].

Potentials that decay at r →∞ faster than r−2 are known not to show crystallization at

positive temperature [BLANC/LEWIN 2015].

Note that there is no phase transition in d = 1 (similarly to percolation).

We are using classical equilibrium statistical mechanics.
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The model

(finite-range) energy for particles 0 = x1 < x2 < · · · < xN = L:

U (m)

N (x) =
∑

0<i<j≤N : |j−i|≤m

v(xj − xi), m ∈ N ∪ {∞}.

canonical partition function Z(m)

N (β, L), canonical Gibbs measure P(m,β)

N,L .

Free enery per particle:

f (m)(β, `) = − 1

β
lim
N→∞

1

N
logZ(m)

N (β, `N).

Pressure p(m)(β, `) = − ∂
∂`
f (m)(β, `).
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Assumptions on v

For some α1, α2 > 0 and s > 2,

� v(z) ≥ −α1z
−s for all z > 0 and

v(z) + v(zmax)− 2α1

∑∞
n=2(nz)−s > 0

for z < zmin.

� v′′ is decreasing in [zmin, zmax] and

increasing and non-positive in [2zmin,∞).

� v′′(z) > −α2z
−s−2 for z > rc and

v′′(zmax) +
∑∞
n=2 n

2v(nzmin) > 0.

This is satisfied, e.g., by the Lennard–Jones potential v(r) = r−12 − r−6.
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Cauchy–Born density

Cauchy–Born density and surface energy

1. The limiting ground state energy e0 is equal to minr>0 W (r) = W (a) with the

Cauchy–Born density W (r) =
∑m
k=1 v(kr).

2. The surface energy esurf = limN→∞[EN −Ne0] ∈ (0,∞) exists.

Analogies for β ∈ (0,∞): With zj = xj − xj−1,

− 1

β
log
(∫

[0,R]N−1

e−βUN (z)+pβ
∑N
j=2 zj dz

)
= Ng(R)(β, p) + g(R)

surf(β, p) + o(1),

and, for β →∞,

g(R)(β, 0)→ e0 and g(R)

surf(β, 0)→ esurf .
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Low temperature

We assume that m = 2 and suppress it from notation.

Low-temperature asymptotics

(a) For 0� ` < a,

lim
β→∞

f(β, `) = W (`) ∈ (a,∞) and lim
β→∞

p(β, `) = −W ′(`) ∈ (0,∞).

(b) For ` ∈ (a,∞), as β →∞,

f(β, `) = e(R)

0 (β)− 2

β

√
`− a e−βe

(R)
surf

(β)/2(1 + o(1)),

p(β, `) =
1

β
√
`− a

e−βe
(R)
surf

(β)/2(1 + o(1)).

In particular, limβ→∞ f(β, `) = W (a) = e0.
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Cracks and clusters

With a threshold parameter R > sup supp(v), we call (xj−1, xj) a crack (or gap, void,

broken bond) if zj = xj − xj−1 > R, and we call groups of x’s between cracks clusters.

Let MN be the number of clusters. If MN = n then let 0 < i1 < i2 · · · < in be the indices i

such that zi > R. Define

νN =
1

MN

MN∑
k=1

δik−ik−1 and ν̂N =
1

MN − 1

N∑
j=1

1l{zj > R}δzj−R.

Define, for ` > a and β →∞,

qβ,` =
e−βe

(R)
surf

(β)

βp(β, `)
=
√
`− a e−βe

(R)
surf

(β)/2(1 + o(1)).

Low-temperature behaviour of cracks and clusters

For all sufficiently large β, in the limit N →∞, in distribution under P(β)

N,N`,

MN

N
→ qβ,`, νN → Geo(

qβ,`
1+qβ,`

), ν̂N → Exp(βp(β, `)).

The convergences are exponentially fast in N .

We also show that the average spacing in each cluster is a.

Classical many-body systems · 30 June, 2022 · Page 25 (25)



Weierstrass Institute for
Applied Analysis and Stochastics

The interacting Bose gas as a marked point process

Wolfgang König (WIAS Berlin und TU Berlin)

Berlin, 1 July 2022



A prediction of 1924

� In 1924, the unknown young physicist SATYENDRA NATH BOSE asked the famous ALBERT

EINSTEIN to help him publishing his latest achievement in Zeitschrift für Physik.

� Einstein translated the manuscript into German and had published it there for Bose.

� He stressed that the new method is suitable for explaining the quantum mechanics of the

ideal gas. He extended the idea to atoms in a second paper: he predicted the existence of

a previously unknown state of matter, now known as the Bose–Einstein condensate.

ALBERT EINSTEIN (1879-1955) in 1921 SATYENDRA NATH BOSE (1894-1974) in 1925

� An experimental realisation had to wait until 1995, where some ten thousands of atoms

appeared in that condensate at a temperature of 10−9 K. =⇒ Nobel Prize in 2001
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The interacting Bose gas

A quantum system of N particles in a box Λ ⊂ Rd with mutually repellent interaction is

described by the Hamilton operator

H(Λ)

N = −
N∑
i=1

∆i +
∑

1≤i<j≤N

v
(
xi − xj

)
, x1, . . . , xN ∈ Λ.

� The kinetic energy term ∆i acts on the i-th particle.

� The pair potential v : Rd → [0,∞) is symmetric and has (for simplicity) compact

support.

We concentrate on Bosons and introduce a symmetrisation. The symmetrised trace of

exp{−βH(Λ)

N } at fixed temperature 1/β ∈ (0,∞) in Λ is the

partition function: ZN (β,Λ) = Tr+

(
exp{−βH(Λ)

N }
)
.

(the trace of the projection on the set of symmetric (= permutation invariant) wave functions).

We will be working in the thermodynamic limit and will take a centred box ΛN with volume

N/ρ with ρ ∈ (0,∞) the particle density.
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Abstract main strategy (1)

Our overall goal is to make the partition function ZN (β,ΛN ) amenable to a large-deviation

analysis by rewriting it in a form like

ZN (β,ΛN ) = E
[
e−|ΛN |F (RN )1l{G(RN )=c}

]
,

where c ∈ R, and F and G are continuous and bounded functions on some nice state space

X ,

and (RN )N∈N is an X -valued sequence of random variables that satisfy a large-deviation

principle:
lim
N→∞

1

|ΛN |
log P(RN ∈ A) = − inf

A
I, A ⊂ X ,

for some rate function I : X → [0,∞].

Varadhan’s lemma then implies that

lim
N→∞

1

|ΛN |
logE

[
e−|ΛN |F (RN )1l{G(RN )=c}

]
= − inf

{
F (R) + I(R) : R ∈ X , G(R) = c

}
.

(If G is only lower semi-continuous, one should have ‘G(R) ≤ c’ in the formula, and we have

a priori only ‘≤’ instead of ‘=’.)
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Abstract main strategy (2)

We need four main reformulation steps:

� Feynman-Kac formula: N interacting Brownian bridges with symmetrised initial-terminal

condition,

� Cycle expansion: Reorganisation in terms of the cycle lengths of the concatenated

Brownian bridges,

� Marked Poisson point process: Rewrite in terms of a PPP with the cycles attached as

marks.

� Stationary empirical field: Translation into the stationary empirical field.

The stationary empirical field, RN , will turn out to be the above mentioned large-deviation

reference process.

The first step is classic, the second well-known, and the third and fourth stem from [ADAMS,

COLLEVECCHIO, K. (2011)] in this context.
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First reformulation: Feynman–Kac formula

A Brownian bridge B in ΛN with generator ∆ and time horizon [0, β], starting from x and

terminating at y under µ(β)
x,y :

µ(β)
x,y(A) = Px(B ∈ A;Bβ ∈ dy), A ⊂ C([0, β]→ Rd).

The operator eβ∆ has density µ(β)
x,y in the sense that

eβ∆(f)(x, y)“ = ”µ(β)
x,y(df), f ∈ C([0, β]→ Rd).

The total mass of µ(β)
x,x is (4πβ)−d/2.

InHN , we have N independent Brownian bridges B(1), . . . , B(N) ∈ C([0, β]→ Rd). The

symmetrisation is expressed by a sum over all permutations σ of 1, . . . , N with the condition

B(i)

β = B(σ(i))

0 .

The pair interaction is

GN (β) =
∑

1≤i<j≤N

∫ β

0

ds v
(
|B(i)
s −B(j)

s |
)
.
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Second reformulation: cycle expansion (I)

Feynman-Kac formula [GINIBRE (1970)]:

For bc ∈ {Dir, per}, any N ∈ N and any measurable bounded set Λ,

Z(bc)

N (β,Λ) =
1

N !

∑
σ∈SN

∫
ΛN

dx1 · · ·dxN
N⊗
i=1

µ(β,bc)
xi,xσ(i)

[
e−GN (β)

]
,

where SN is the set of permutations of 1, . . . , N .

Every permutation σ with the same cycle structure gives the same contribution. Indeed,

concatenate the Brownian bridges along every cycle and carry out the integrals over the

corresponding xi ∈ ΛN . By the Markov property,∫
Rd
µ(β)
x,y(df1)µ(β)

y,z(df2) dy = µ(2β)
x,z (d(f1 � f2)), f1, f2 ∈ C([0, β]→ Rd),

where f1 � f2 ∈ C([0, 2β]→ Rd) is the concatenation of f1 and f2.

We obtain a random number of cycles of motions with random lengths, with total sum of lengths

equal to N .

The interacting Bose gas as a marked point process · Berlin, 1 July 2022 · Page 7 (20)



Second reformulation: cycle expansion (II)

Cycle expansion:

For any N ∈ N and any measurable bounded set Λ,

ZN (β,Λ) =
∑

λ1,λ2,···∈N∑
k kλk=N

⊗
k∈N

(
E(βk)

Λ

)⊗λk[e−GN,β]∏
k∈N

(4πβk)−dλk/2|Λ|λk
λk!kλk

,

where E(βk)

Λ = 1
|Λ|

∫
Λ

dx(4πβk)d/2µ(βk)
x,x is the (normalised) expectation w.r.t. a Brownian

bridge from x to x, and x is uniformly distributed over Λ.

� λk is the number of cycles of length k, that is, the number of Brownian bridges with time

horizon [0, βk].

� GN (β) summarizes all the interaction between any two different parts of any cycle(s).

� The last term summarizes the combinatorics (number of permutations with given cycle

structure) and the normalisations.
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Illustration

Bose gas consisting of 14 particles, organised in three Brownian cycles, assigned to three

Poisson points. The red cycle contains six particles, the green and the blue each four.
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Third reformulation: marked Poisson point process (I)

We are heading towards a probabilistic, spatial description of the partition function in terms of a

marked Poisson point process ωP =
∑
x∈ξP

δ(x,Bx).

� Each Poisson point x ∈ ξP has a Brownian cycle Bx starting and ending at x as a mark.

� ωP is a point process on Rd × E, where E =
⋃
k∈N Ck is the mark space, and

Ck = C([0, βk]→ Rd) is the set of marks of length k.

� We choose its intensity measure as
∑
k∈N

1
k

Leb(dx)⊗ µ(kβ)
x,x (df).

Alternatively, the intensity measure of ξP is equal to qLeb, where

q =
∑
k∈N

qk where qk = (4πβ)−d/2k−1−d/2 =
1

k
µ(βk)
x,x (Ck).

Given ξP, the marks Bx with x ∈ ξP have length with probability qk/q and then have the law

µ(kβ)
x,x /kqk on Ck.
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Third reformulation: marked Poission point process (II)

For configurations ω =
∑
x∈ξ δ(x,fx) ∈ Ω,

N (`)

Λ (ω) =
∑
x∈Λ∩ξ

`(fx) = number of particles at points in Λ,

where `(fx) is the length (= particle number) of the cycle fx. The interaction is expressed as

ΦΛ,Λ′(ω) =
∑

x∈ξ∩Λ,y∈ξ∩Λ′

Tx,y(fx, fy),

where

Tx,y(fx, fy) =
1

2

`(fx)∑
i=1

`(fy)∑
j=1

V (fx,i, fy,j), x, y ∈ ξ, fx, fy ∈ C,

and fx,i(·) = fx((i− 1)β + ·)|[0,β] is the i-th leg of a function fx ∈ C, and

V (f, g) =

∫ β

0

v(|f(s)− g(s)|) ds.

Lemma [ADAMS/COLLEVECCHIO/K. 2011]

ZN (β,Λ) = e|Λ|q E
[
e−ΦΛ,Λ(ωP)1l{N (`)

Λ (ωP) = N}
]
.
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Fourth reformulation: the stationary empirical field (I)

For a configuration ω ∈ Ω, let ω(N) be the ΛN -periodic continuation of the restriction of ω to

ΛN . The stationary empirical field is defined as

RN =
1

|ΛN |

∫
ΛN

dy δ
θyω

(N)
P

(with θy = shift operator.)

Then RN is a random element of the set Pθ of stationary marked random point fields.

Theorem. [GEORGII/ZESSIN (1994)]

(RN )N∈N satisfies a large-deviation principle with rate function

I(P ) = lim
N→∞

1

|ΛN |
H
(
PΛN

∣∣ωP|ΛN
)
.

I is affine, lower semicontinuous and has compact level sets.
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Fourth reformulation: the stationary empirical field (II)

Introduce U = [ 1
2
, 1

2
]d and, for configurations ω =

∑
x∈ξ δ(x,fx),

NU (ω) = |U ∩ ξ| and N (`)

U (ω) =
∑

x∈U∩ξ

`(fx),

where `(fx) is the length (= time horizon) of the cycle fx. The interaction is expressed as

Φ(ω) =
1

2

∑
x∈U∩ξ

∑
y∈ξ

`(fx)−1∑
i=0

`(fy)−1∑
j=0

1l{(x,i) 6=(y,j)}

∫ β

0

ds v
(
|fx(iβ+s)+x−fy(jβ+s)−y|

)
.

Lemma.

ZN (β,ΛN ) = e|ΛN |qE
[
e−|ΛN |〈RN ,Φ〉1l{〈RN ,N

(`)
U
〉=ρ}

]
.

� One of the two sums over x, y ∈ ΛN goes into the definition of RN , hence the x-sum in

Φ(ω) is only over U .

� The condition 〈RN , N
(`)

U 〉 = ρ says that the total length of all cycles starting in U is

equal to N .
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The limiting free energy

Assume that
∫
v(|x|) dx <∞ and that lim supr→∞ v(r)rh <∞ for some h > d.

Theorem B:

For any β, ρ ∈ (0,∞),

lim sup
N→∞

1

|ΛN |
logZN (β,ΛN ) ≤ q − inf

{
I(P ) + 〈P,Φ〉 : P ∈ Pθ, 〈P,N (`)

U 〉 ≤ ρ
}
,

lim inf
N→∞

1

|ΛN |
logZN (β,ΛN ) ≥ q − inf

{
I(P ) + 〈P,Φ〉 : P ∈ Pθ, 〈P,N (`)

U 〉 = ρ
}
.

� The equality 〈RN , N
(`)

U 〉 = ρ is turned into an inequality 〈P,N (`)

U 〉 ≤ ρ in the limit

superior (in accordance with Fatou’s lemma), but not in the limit inferior.

� P stands for a stationary marked random point field
∑
x∈ξ δ(x,fx). Its mark fx at x is a

random continuous function [0, β`(fx)]→ Rd, starting at ending at x.

� The expected total length 〈P,N (`)

U 〉 of all the points in the unit box U is not larger than ρ

(this is the only dependence on the particle density).

� 〈P,Φ〉 is the expected interaction in the configuration.

� I(P ) measures how probable P is by comparison to the above marked Poisson process

as a reference process.
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High-temperature phase

In the phase
Dv =

{
(β, ρ) ∈ (0,∞)2 : (4πβ)−d/2 ≥ ρeβρ

∫
v(|x|) dx

}
we find additional estimates to identify the limit:

Lemma.

For any N ∈ N and any measurable bounded Λ,
ZN+1(β,Λ)

ZN (β,Λ)
≥ (4πβ)−d/2

|Λ|
N + 1

e−Nβ
∫
v(|x|) dx/|Λ|.

This yields an upper bound for the free energy ...

Corollary 1.

For any β, ρ ∈ (0,∞),

f(β, ρ) ≤ ρ

β
log
(
ρ(4πβ)d/2

)
+ ρ2

∫
v(|x|) dx.

... and enables us to close the gap in Theorem B:

Corollary 2.

If (β, ρ) ∈ Dv , then

lim inf
N→∞

1

|ΛN |
logZN (β,ΛN ) ≥ q − inf

{
I(P ) + 〈P,Φ〉 : P ∈ Pθ, 〈P,N (`)

U 〉 ≤ ρ
}
.
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Illustration of condensate phase transition

Subcritical (low ρ) Bose gas

without condensate

Supercritical (large ρ) Bose gas

with additional condensate (red)
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The free (= noninteracting) case

The free case v ≡ 0 is much simpler. No space, no point processes, only cycle lengths:

χ(v=0)(β, ρ) = inf
{
H(m|q) : m ∈ [0,∞)N,

∑
k∈N

kmk = ρ
}
,

where H(m|q) =
∑
k(qk −mk +mk log mk

qk
) is the relative entropy of the sequence

m = (mk)k∈N with respect to q = (qk)k∈N.

� mk = effective density of points with cycles of length k,

� qk = a priori k-cycle density (i.e., in the reference measure).

Euler–Lagrange equation: mk = qkeαk for k ∈ N with α ∈ R the Lagrange multiplier.∑
k

kmk = ρ =⇒ α ≤ 0

Largest achievable value of ρ is

ρc(β) =
∑
k∈N

kqk = (4πβ)−d/2ζ(d/2)

{
=∞ if d ≤ 2,

<∞ if d ≥ 3.
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Open conjectures

1. ‘=’ holds true for any ρ.

2. Existence of minimizer P ⇐⇒ absence of condensate.

3. There is a critical density ρc > 0 (finite if and only if d ≥ 3) such that a minimizer P

exists for ρ < ρc and does not exist for ρ > ρc.

4. That is,

ρc = sup
{
ρ ∈ (0,∞) : χ(β, ρ) has a minimizer P

}
.

5. There is a variational formula on an extended space that describes also the condensate.

A great part of this (namely, (1) and (5)) has recently been proved for a simplified model

(deterministic boxes instead of random bridges) in [COLLIN/JAHNEL/K. (2022)].
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BEC

Functional analytic definition of BEC: Fix x1 and x2 and consider the two-point density matrix

γN (x1, x2) =
1

ZN (β,ΛN )

1

N !

∑
σ∈SN

∫
ΛN

dx3 · · ·dxN
N⊗
i=1

µ(β)
xi,xσ(i)

[
e−GN (β)

]
.

Let KN be the integral operator with kernel γN . Then

BEC holds :⇐⇒ KN has an eigenvalue � N.

Conjecture

BEC holds ⇐⇒ Macroscopic cycles matter.

True for some mean-field models, see [SÜTŐ (1993)], [SÜTŐ (2002)], but disproved in some

example [UELTSCHI (2006)]
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